![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | reximia 3038 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ral 2946 df-rex 2947 |
This theorem is referenced by: 2r19.29 3108 r19.29d2r 3109 r19.40 3117 reu3 3429 2reu5 3449 ssiun 4594 iinss 4603 elsnxp 5715 elsnxpOLD 5716 elunirn 6549 iiner 7862 erovlem 7886 xpf1o 8163 unbnn2 8258 scott0 8787 dfac2 8991 cflm 9110 alephsing 9136 numthcor 9354 zorng 9364 zornn0g 9365 ttukeyg 9377 uniimadom 9404 axgroth3 9691 qextlt 12072 qextle 12073 mptnn0fsuppd 12838 hash2sspr 13308 cshword 13583 rexanre 14130 climi2 14286 climi0 14287 rlimres 14333 lo1res 14334 caurcvgr 14448 caurcvg2 14452 caucvgb 14454 prodmolem2 14709 prodmo 14710 vdwnnlem1 15746 cshwsiun 15853 isnmnd 17345 efgrelexlemb 18209 nn0gsumfz0 18427 pmatcollpw2lem 20630 eltg2b 20811 neiptopuni 20982 neiptopnei 20984 ordtbas2 21043 lmcvg 21114 cnprest 21141 lmcnp 21156 nrmsep2 21208 bwth 21261 1stcfb 21296 islly2 21335 llycmpkgen 21403 txbas 21418 tx1stc 21501 cnextcn 21918 tmdcn2 21940 utoptop 22085 ucnima 22132 cfiluweak 22146 metrest 22376 metust 22410 cfilucfil 22411 metustbl 22418 xrhmeo 22792 cmetcaulem 23132 iundisj 23362 limcresi 23694 elply2 23997 aalioulem2 24133 ulmf 24181 lgamucov2 24810 2sqlem7 25194 pntrsumbnd 25300 istrkg2ld 25404 tgisline 25567 umgr2edgneu 26151 umgr3v3e3cycl 27162 eucrctshift 27221 1to3vfriendship 27261 2pthfrgrrn 27262 grpoidval 27495 grporcan 27500 grpoinveu 27501 iundisjf 29528 xlt2addrd 29651 xrofsup 29661 iundisjfi 29683 rhmdvdsr 29946 tpr2rico 30086 esumc 30241 esumfsup 30260 esumpcvgval 30268 hasheuni 30275 esumiun 30284 voliune 30420 volfiniune 30421 dya2icoseg2 30468 dya2iocnei 30472 dya2iocuni 30473 omssubaddlem 30489 omssubadd 30490 afsval 30877 bnj31 30913 bnj1239 31002 bnj900 31125 bnj906 31126 bnj1398 31228 bnj1498 31255 nosupno 31974 nosupfv 31977 colinearex 32292 segcon2 32337 opnrebl2 32441 sdclem2 33668 heibor1lem 33738 grpomndo 33804 prtlem9 34468 prtlem11 34470 prter1 34483 prter2 34485 hl2at 35009 cvrval4N 35018 athgt 35060 1dimN 35075 lhpexnle 35610 lhpexle1 35612 cdlemftr2 36171 cdlemftr1 36172 cdlemftr0 36173 cdlemg5 36210 cdlemg33c0 36307 mapdrvallem2 37251 eldiophb 37637 rmxyelqirr 37792 hbtlem1 38010 hbtlem7 38012 ss2iundf 38268 iinssf 39641 founiiun 39674 founiiun0 39691 climuzlem 40293 stirlinglem13 40621 fourierdlem112 40753 reuan 41501 2reu2rex 41504 cshword2 41762 gbogbow 41969 sbgoldbo 42000 |
Copyright terms: Public domain | W3C validator |