Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Structured version   Visualization version   GIF version

Theorem rexfrabdioph 37880
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑀   𝑡,𝑁,𝑢,𝑣   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑣,𝑢)

Proof of Theorem rexfrabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . 3 𝑢(ℕ0𝑚 (1...𝑁))
2 nfcv 2903 . . 3 𝑎(ℕ0𝑚 (1...𝑁))
3 nfv 1993 . . 3 𝑎𝑣 ∈ ℕ0 𝜑
4 nfcv 2903 . . . 4 𝑢0
5 nfsbc1v 3597 . . . 4 𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑
64, 5nfrex 3146 . . 3 𝑢𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑
7 nfv 1993 . . . . 5 𝑏𝜑
8 nfsbc1v 3597 . . . . 5 𝑣[𝑏 / 𝑣]𝜑
9 sbceq1a 3588 . . . . 5 (𝑣 = 𝑏 → (𝜑[𝑏 / 𝑣]𝜑))
107, 8, 9cbvrex 3308 . . . 4 (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑)
11 sbceq1a 3588 . . . . 5 (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑[𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1211rexbidv 3191 . . . 4 (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
1310, 12syl5bb 272 . . 3 (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑))
141, 2, 3, 6, 13cbvrab 3339 . 2 {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑}
15 rexfrabdioph.1 . . 3 𝑀 = (𝑁 + 1)
16 dfsbcq 3579 . . . 4 (𝑏 = (𝑡𝑀) → ([𝑏 / 𝑣]𝜑[(𝑡𝑀) / 𝑣]𝜑))
1716sbcbidv 3632 . . 3 (𝑏 = (𝑡𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑[𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
18 dfsbcq 3579 . . 3 (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑))
1915, 17, 18rexrabdioph 37879 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁))
2014, 19syl5eqel 2844 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wrex 3052  {crab 3055  [wsbc 3577  cres 5269  cfv 6050  (class class class)co 6815  𝑚 cmap 8026  1c1 10150   + caddc 10152  0cn0 11505  ...cfz 12540  Diophcdioph 37839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-hash 13333  df-mzpcl 37807  df-mzp 37808  df-dioph 37840
This theorem is referenced by:  2rexfrabdioph  37881  3rexfrabdioph  37882  7rexfrabdioph  37885  rmxdioph  38104  expdiophlem2  38110
  Copyright terms: Public domain W3C validator