MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexfiuz Structured version   Visualization version   GIF version

Theorem rexfiuz 14286
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Distinct variable groups:   𝑗,𝑘,𝑛,𝐴   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘,𝑛)

Proof of Theorem rexfiuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3277 . . . 4 (𝑥 = ∅ → (∀𝑛𝑥 𝜑 ↔ ∀𝑛 ∈ ∅ 𝜑))
21rexralbidv 3196 . . 3 (𝑥 = ∅ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑))
3 raleq 3277 . . 3 (𝑥 = ∅ → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
42, 3bibi12d 334 . 2 (𝑥 = ∅ → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
5 raleq 3277 . . . 4 (𝑥 = 𝑦 → (∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑦 𝜑))
65rexralbidv 3196 . . 3 (𝑥 = 𝑦 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑))
7 raleq 3277 . . 3 (𝑥 = 𝑦 → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
86, 7bibi12d 334 . 2 (𝑥 = 𝑦 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
9 raleq 3277 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛𝑥 𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑))
109rexralbidv 3196 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑))
11 raleq 3277 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
1210, 11bibi12d 334 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
13 raleq 3277 . . . 4 (𝑥 = 𝐴 → (∀𝑛𝑥 𝜑 ↔ ∀𝑛𝐴 𝜑))
1413rexralbidv 3196 . . 3 (𝑥 = 𝐴 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑))
15 raleq 3277 . . 3 (𝑥 = 𝐴 → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
1614, 15bibi12d 334 . 2 (𝑥 = 𝐴 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
17 0z 11580 . . . . 5 0 ∈ ℤ
1817ne0ii 4066 . . . 4 ℤ ≠ ∅
19 ral0 4220 . . . . 5 𝑛 ∈ ∅ 𝜑
2019rgen2w 3063 . . . 4 𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑
21 r19.2z 4204 . . . 4 ((ℤ ≠ ∅ ∧ ∀𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑)
2218, 20, 21mp2an 710 . . 3 𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑
23 ral0 4220 . . 3 𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑
2422, 232th 254 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
25 anbi1 745 . . . 4 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
26 rexanuz 14284 . . . . 5 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
27 ralunb 3937 . . . . . . 7 (∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
2827ralbii 3118 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
2928rexbii 3179 . . . . 5 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
30 vex 3343 . . . . . . 7 𝑧 ∈ V
31 ralsnsg 4360 . . . . . . . 8 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑[𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
32 ralcom 3236 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ𝑗)𝜑)
33 ralsnsg 4360 . . . . . . . . . . 11 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ𝑗)𝜑[𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
3432, 33syl5bb 272 . . . . . . . . . 10 (𝑧 ∈ V → (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑[𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
3534rexbidv 3190 . . . . . . . . 9 (𝑧 ∈ V → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
36 sbcrex 3655 . . . . . . . . 9 ([𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑)
3735, 36syl6rbbr 279 . . . . . . . 8 (𝑧 ∈ V → ([𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
3831, 37bitrd 268 . . . . . . 7 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
3930, 38ax-mp 5 . . . . . 6 (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑)
4039anbi2i 732 . . . . 5 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
4126, 29, 403bitr4i 292 . . . 4 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
42 ralunb 3937 . . . 4 (∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ (∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
4325, 41, 423bitr4g 303 . . 3 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
4443a1i 11 . 2 (𝑦 ∈ Fin → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
454, 8, 12, 16, 24, 44findcard2 8365 1 (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340  [wsbc 3576  cun 3713  c0 4058  {csn 4321  cfv 6049  Fincfn 8121  0cc0 10128  cz 11569  cuz 11879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-i2m1 10196  ax-1ne0 10197  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-om 7231  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-neg 10461  df-z 11570  df-uz 11880
This theorem is referenced by:  uniioombllem6  23556  rrncmslem  33944
  Copyright terms: Public domain W3C validator