![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rexeqf 3266 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1624 ∃wrex 3043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-cleq 2745 df-clel 2748 df-nfc 2883 df-rex 3048 |
This theorem is referenced by: rexeqi 3274 rexeqdv 3276 rexeqbi1dv 3278 unieq 4588 exss 5072 qseq1 7955 1sdom 8320 pssnn 8335 indexfi 8431 supeq1 8508 bnd2 8921 dfac2b 9135 dfac2OLD 9137 cflem 9252 cflecard 9259 cfeq0 9262 cfsuc 9263 cfflb 9265 cofsmo 9275 elwina 9692 eltskg 9756 rankcf 9783 elnp 9993 elnpi 9994 genpv 10005 xrsupsslem 12322 xrinfmsslem 12323 xrsupss 12324 xrinfmss 12325 hashge2el2difr 13447 isdrs 17127 isipodrs 17354 neifval 21097 ishaus 21320 2ndc1stc 21448 1stcrest 21450 lly1stc 21493 isref 21506 islocfin 21514 tx1stc 21647 isust 22200 iscfilu 22285 met1stc 22519 iscfil 23255 isgrpo 27652 chne0 28654 pstmfval 30240 dya2iocuni 30646 noetalem3 32163 altxpeq1 32378 altxpeq2 32379 elhf2 32580 bj-sngleq 33253 cover2g 33814 indexdom 33834 istotbnd 33873 pmapglb2xN 35553 paddval 35579 elpadd0 35590 diophrex 37833 hbtlem1 38187 hbtlem7 38189 sprval 42231 sprsymrelfvlem 42242 sprsymrelfv 42246 sprsymrelfo 42249 |
Copyright terms: Public domain | W3C validator |