Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexdiv Structured version   Visualization version   GIF version

Theorem rexdiv 29762
Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
rexdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))

Proof of Theorem rexdiv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 redivcl 10782 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 10064 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10064 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 id 22 . . . . . 6 (𝐵 ≠ 0 → 𝐵 ≠ 0)
52, 3, 43anim123i 1266 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divcan2 10731 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
8 oveq2 6698 . . . . . 6 (𝑥 = (𝐴 / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (𝐴 / 𝐵)))
98eqeq1d 2653 . . . . 5 (𝑥 = (𝐴 / 𝐵) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
109rspcev 3340 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ (𝐵 · (𝐴 / 𝐵)) = 𝐴) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
111, 7, 10syl2anc 694 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
12 receu 10710 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
135, 12syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
14 ax-resscn 10031 . . . 4 ℝ ⊆ ℂ
15 id 22 . . . . 5 ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
1615rgenw 2953 . . . 4 𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
17 riotass2 6678 . . . 4 (((ℝ ⊆ ℂ ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1814, 16, 17mpanl12 718 . . 3 ((∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1911, 13, 18syl2anc 694 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
20 rexr 10123 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
21 xdivval 29755 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
2220, 21syl3an1 1399 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23 ressxr 10121 . . . . 5 ℝ ⊆ ℝ*
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ℝ ⊆ ℝ*)
25 rexmul 12139 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ·e 𝑥) = (𝐵 · 𝑥))
2625eqeq1d 2653 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
2726biimprd 238 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
2827ralrimiva 2995 . . . . 5 (𝐵 ∈ ℝ → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
29283ad2ant2 1103 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
30 xreceu 29758 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
3120, 30syl3an1 1399 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
32 riotass2 6678 . . . 4 (((ℝ ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3324, 29, 11, 31, 32syl22anc 1367 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3422, 33eqtr4d 2688 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
35 divval 10725 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
365, 35syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
3719, 34, 363eqtr4d 2695 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  ∃!wreu 2943  wss 3607  crio 6650  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   · cmul 9979  *cxr 10111   / cdiv 10722   ·e cxmu 11983   /𝑒 cxdiv 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-xneg 11984  df-xmul 11986  df-xdiv 29754
This theorem is referenced by:  xdivid  29764  xdiv0  29765  rpxdivcld  29770  esumdivc  30273  probmeasb  30620  coinfliplem  30668
  Copyright terms: Public domain W3C validator