Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifpr Structured version   Visualization version   GIF version

Theorem rexdifpr 4342
 Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 4341 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴𝑥𝐵𝑥𝐶))
2 3anass 1079 . . . . 5 ((𝑥𝐴𝑥𝐵𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
31, 2bitri 264 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
43anbi1i 602 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑))
5 anass 459 . . . 4 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
6 df-3an 1072 . . . . . 6 ((𝑥𝐵𝑥𝐶𝜑) ↔ ((𝑥𝐵𝑥𝐶) ∧ 𝜑))
76bicomi 214 . . . . 5 (((𝑥𝐵𝑥𝐶) ∧ 𝜑) ↔ (𝑥𝐵𝑥𝐶𝜑))
87anbi2i 601 . . . 4 ((𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
95, 8bitri 264 . . 3 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
104, 9bitri 264 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
1110rexbii2 3186 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382   ∧ w3a 1070   ∈ wcel 2144   ≠ wne 2942  ∃wrex 3061   ∖ cdif 3718  {cpr 4316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-rex 3066  df-v 3351  df-dif 3724  df-un 3726  df-sn 4315  df-pr 4317 This theorem is referenced by:  usgr2pth0  26895
 Copyright terms: Public domain W3C validator