![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcomf | Structured version Visualization version GIF version |
Description: Commutation of restricted existential quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcomf.1 | ⊢ Ⅎ𝑦𝐴 |
ralcomf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
rexcomf | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 452 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | anbi1i 610 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
3 | 2 | 2exbii 1925 | . . 3 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ∃𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
4 | excom 2198 | . . 3 ⊢ (∃𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑) ↔ ∃𝑦∃𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) | |
5 | 3, 4 | bitri 264 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ∃𝑦∃𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
6 | ralcomf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
7 | 6 | r2exf 3208 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
8 | ralcomf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
9 | 8 | r2exf 3208 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
10 | 5, 7, 9 | 3bitr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∃wex 1852 ∈ wcel 2145 Ⅎwnfc 2900 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 |
This theorem is referenced by: rexcom 3247 rexcom4f 29657 |
Copyright terms: Public domain | W3C validator |