![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4b | Structured version Visualization version GIF version |
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4b.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
rexcom4b | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4a 3358 | . 2 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | |
2 | rexcom4b.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | 2 | isseti 3341 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐵 |
4 | 3 | biantru 527 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
5 | 4 | rexbii 3171 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
6 | 1, 5 | bitr4i 267 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1624 ∃wex 1845 ∈ wcel 2131 ∃wrex 3043 Vcvv 3332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-v 3334 |
This theorem is referenced by: islshpat 34799 |
Copyright terms: Public domain | W3C validator |