![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 3128 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑) | |
2 | rexv 3251 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
3 | 2 | rexbii 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦𝜑) |
4 | rexv 3251 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitr3i 290 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1744 ∃wrex 2942 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 |
This theorem is referenced by: rexcom4a 3257 reuind 3444 uni0b 4495 iuncom4 4560 dfiun2g 4584 iunn0 4612 iunxiun 4640 iinexg 4854 inuni 4856 iunopab 5041 xpiundi 5207 xpiundir 5208 cnvuni 5341 dmiun 5365 elres 5470 elsnres 5471 rniun 5578 xpdifid 5597 imaco 5678 coiun 5683 abrexco 6542 imaiun 6543 fliftf 6605 fun11iun 7168 oprabrexex2 7200 releldm2 7262 oarec 7687 omeu 7710 eroveu 7885 dfac5lem2 8985 genpass 9869 supaddc 11028 supadd 11029 supmul1 11030 supmullem2 11032 supmul 11033 pceu 15598 4sqlem12 15707 mreiincl 16303 psgneu 17972 ntreq0 20929 unisngl 21378 metrest 22376 metuel2 22417 istrkg2ld 25404 fpwrelmapffslem 29635 omssubaddlem 30489 omssubadd 30490 bnj906 31126 nosupno 31974 nosupfv 31977 bj-elsngl 33081 bj-restn0 33168 ismblfin 33580 itg2addnclem3 33593 sdclem1 33669 prter2 34485 lshpsmreu 34714 islpln5 35139 islvol5 35183 cdlemftr3 36170 mapdpglem3 37281 hdmapglem7a 37536 diophrex 37656 imaiun1 38260 coiun1 38261 upbdrech 39833 |
Copyright terms: Public domain | W3C validator |