![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 670 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3068 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-rex 2947 |
This theorem is referenced by: 2rexbiia 3084 ceqsrexbv 3368 reu8 3435 f1oweALT 7194 reldm 7263 seqomlem2 7591 fofinf1o 8282 wdom2d 8526 unbndrank 8743 cfsmolem 9130 fin1a2lem5 9264 fin1a2lem6 9265 infm3 11020 wwlktovfo 13747 even2n 15113 znf1o 19948 lmres 21152 ist1-2 21199 itg2monolem1 23562 lhop1lem 23821 elaa 24116 ulmcau 24194 reeff1o 24246 recosf1o 24326 chpo1ubb 25215 istrkg2ld 25404 wlkpwwlkf1ouspgr 26833 wlknwwlksnsur 26844 wlkwwlksur 26851 wwlksnextsur 26863 nmopnegi 28952 nmop0 28973 nmfn0 28974 adjbd1o 29072 atom1d 29340 abfmpunirn 29580 rearchi 29970 eulerpartgbij 30562 eulerpartlemgh 30568 subfacp1lem3 31290 dfrdg2 31825 heiborlem7 33746 qsresid 34237 eq0rabdioph 37657 elicores 40078 fourierdlem70 40711 fourierdlem80 40721 ovolval3 41182 rexrsb 41490 |
Copyright terms: Public domain | W3C validator |