MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbida Structured version   Visualization version   GIF version

Theorem rexbida 3076
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
rexbida.1 𝑥𝜑
rexbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexbida (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Proof of Theorem rexbida
StepHypRef Expression
1 rexbida.1 . . 3 𝑥𝜑
2 rexbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32pm5.32da 674 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
41, 3exbid 2129 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
5 df-rex 2947 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
6 df-rex 2947 . 2 (∃𝑥𝐴 𝜒 ↔ ∃𝑥(𝑥𝐴𝜒))
74, 5, 63bitr4g 303 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wex 1744  wnf 1748  wcel 2030  wrex 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-nf 1750  df-rex 2947
This theorem is referenced by:  rexbidvaALT  3079  rexbid  3080  dfiun2g  4584  fun11iun  7168  iuneq12daf  29499  bnj1366  31026  glbconxN  34982  supminfrnmpt  39985  limsupre2mpt  40280  limsupre3mpt  40284  limsupreuzmpt  40289
  Copyright terms: Public domain W3C validator