Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanre Structured version   Visualization version   GIF version

Theorem rexanre 14283
 Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . 6 ((𝜑𝜓) → 𝜑)
21imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜑))
32ralimi 3088 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜑))
43reximi 3147 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑))
5 simpr 479 . . . . . 6 ((𝜑𝜓) → 𝜓)
65imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜓))
76ralimi 3088 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜓))
87reximi 3147 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))
94, 8jca 555 . 2 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)))
10 breq1 4805 . . . . . . . 8 (𝑗 = 𝑥 → (𝑗𝑘𝑥𝑘))
1110imbi1d 330 . . . . . . 7 (𝑗 = 𝑥 → ((𝑗𝑘𝜑) ↔ (𝑥𝑘𝜑)))
1211ralbidv 3122 . . . . . 6 (𝑗 = 𝑥 → (∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∀𝑘𝐴 (𝑥𝑘𝜑)))
1312cbvrexv 3309 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑))
14 breq1 4805 . . . . . . . 8 (𝑗 = 𝑦 → (𝑗𝑘𝑦𝑘))
1514imbi1d 330 . . . . . . 7 (𝑗 = 𝑦 → ((𝑗𝑘𝜓) ↔ (𝑦𝑘𝜓)))
1615ralbidv 3122 . . . . . 6 (𝑗 = 𝑦 → (∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∀𝑘𝐴 (𝑦𝑘𝜓)))
1716cbvrexv 3309 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓))
1813, 17anbi12i 735 . . . 4 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
19 reeanv 3243 . . . 4 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
2018, 19bitr4i 267 . . 3 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
21 ifcl 4272 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2221ancoms 468 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2322adantl 473 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
24 r19.26 3200 . . . . . 6 (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) ↔ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
25 prth 596 . . . . . . . 8 (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ((𝑥𝑘𝑦𝑘) → (𝜑𝜓)))
26 simplrl 819 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
27 simplrr 820 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑦 ∈ ℝ)
28 simpl 474 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2928sselda 3742 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
30 maxle 12213 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3126, 27, 29, 30syl3anc 1477 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3231imbi1d 330 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → ((if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓)) ↔ ((𝑥𝑘𝑦𝑘) → (𝜑𝜓))))
3325, 32syl5ibr 236 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3433ralimdva 3098 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3524, 34syl5bir 233 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
36 breq1 4805 . . . . . . . 8 (𝑗 = if(𝑥𝑦, 𝑦, 𝑥) → (𝑗𝑘 ↔ if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘))
3736imbi1d 330 . . . . . . 7 (𝑗 = if(𝑥𝑦, 𝑦, 𝑥) → ((𝑗𝑘 → (𝜑𝜓)) ↔ (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3837ralbidv 3122 . . . . . 6 (𝑗 = if(𝑥𝑦, 𝑦, 𝑥) → (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3938rspcev 3447 . . . . 5 ((if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ ∧ ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)))
4023, 35, 39syl6an 569 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
4140rexlimdvva 3174 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
4220, 41syl5bi 232 . 2 (𝐴 ⊆ ℝ → ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
439, 42impbid2 216 1 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1630   ∈ wcel 2137  ∀wral 3048  ∃wrex 3049   ⊆ wss 3713  ifcif 4228   class class class wbr 4802  ℝcr 10125   ≤ cle 10265 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-pre-lttri 10200  ax-pre-lttrn 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-po 5185  df-so 5186  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270 This theorem is referenced by:  o1lo1  14465  rlimuni  14478  lo1add  14554  lo1mul  14555  rlimno1  14581
 Copyright terms: Public domain W3C validator