![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version |
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
Ref | Expression |
---|---|
rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3025 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | iman 439 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
3 | 2 | ralbii 3009 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
4 | 1, 3 | xchbinxr 324 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wral 2941 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ral 2946 df-rex 2947 |
This theorem is referenced by: nrexralim 3028 wfi 5751 qsqueeze 12070 ncoprmgcdne1b 15410 elcls 20925 ist1-2 21199 haust1 21204 t1sep 21222 bwth 21261 1stccnp 21313 filufint 21771 fclscf 21876 pmltpc 23265 ovolgelb 23294 itg2seq 23554 radcnvlt1 24217 pntlem3 25343 umgr2edg1 26148 umgr2edgneu 26151 archiabl 29880 ordtconnlem1 30098 ceqsralv2 31733 frpoind 31865 frind 31868 nosupbnd1lem5 31983 limsucncmpi 32569 matunitlindflem1 33535 ftc1anclem5 33619 clsk3nimkb 38655 |
Copyright terms: Public domain | W3C validator |