![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rex0 | Structured version Visualization version GIF version |
Description: Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4063 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 116 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
3 | 2 | nrex 3139 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2140 ∃wrex 3052 ∅c0 4059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-v 3343 df-dif 3719 df-nul 4060 |
This theorem is referenced by: 0iun 4730 sup0riota 8539 cfeq0 9291 cfsuc 9292 hashge2el2difr 13476 cshws0 16031 meet0 17359 join0 17360 dya2iocuni 30676 eulerpartlemgh 30771 0qs 34474 pmapglb2xN 35580 elpadd0 35617 sprsymrelfvlem 42269 |
Copyright terms: Public domain | W3C validator |