![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuxfr4d | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfrd 5042. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
Ref | Expression |
---|---|
reuxfr4d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
reuxfr4d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
reuxfr4d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reuxfr4d | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr4d.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
2 | reurex 3299 | . . . . . 6 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
4 | 3 | biantrurd 530 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓))) |
5 | r19.41v 3227 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓)) | |
6 | reuxfr4d.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
7 | 6 | pm5.32da 676 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝜓) ↔ (𝑥 = 𝐴 ∧ 𝜒))) |
8 | 7 | rexbidv 3190 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
9 | 5, 8 | syl5bbr 274 | . . . . 5 ⊢ (𝜑 → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
10 | 9 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
11 | 4, 10 | bitrd 268 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
12 | 11 | reubidva 3264 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
13 | reuxfr4d.1 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
14 | reurmo 3300 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
15 | 1, 14 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
16 | 13, 15 | reuxfr3d 29637 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒) ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
17 | 12, 16 | bitrd 268 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∃!wreu 3052 ∃*wrmo 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-v 3342 |
This theorem is referenced by: rmoxfrdOLD 29640 rmoxfrd 29641 fcnvgreu 29781 |
Copyright terms: Public domain | W3C validator |