![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuv | Structured version Visualization version GIF version |
Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
Ref | Expression |
---|---|
reuv | ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3053 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3339 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 528 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | eubii 2625 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 267 | 1 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2135 ∃!weu 2603 ∃!wreu 3048 Vcvv 3336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-12 2192 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-clab 2743 df-cleq 2749 df-clel 2752 df-reu 3053 df-v 3338 |
This theorem is referenced by: euen1 8187 hlimeui 28402 |
Copyright terms: Public domain | W3C validator |