MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem2 Structured version   Visualization version   GIF version

Theorem reusv2lem2 4899
Description: Lemma for reusv2 4904. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.)
Assertion
Ref Expression
reusv2lem2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reusv2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eunex 4889 . . . . 5 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥 ¬ ∀𝑦𝐴 𝑥 = 𝐵)
2 exnal 1794 . . . . 5 (∃𝑥 ¬ ∀𝑦𝐴 𝑥 = 𝐵 ↔ ¬ ∀𝑥𝑦𝐴 𝑥 = 𝐵)
31, 2sylib 208 . . . 4 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ¬ ∀𝑥𝑦𝐴 𝑥 = 𝐵)
4 rzal 4106 . . . . 5 (𝐴 = ∅ → ∀𝑦𝐴 𝑥 = 𝐵)
54alrimiv 1895 . . . 4 (𝐴 = ∅ → ∀𝑥𝑦𝐴 𝑥 = 𝐵)
63, 5nsyl3 133 . . 3 (𝐴 = ∅ → ¬ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
76pm2.21d 118 . 2 (𝐴 = ∅ → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
8 simpr 476 . . . 4 ((𝐴 ≠ ∅ ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
9 nfra1 2970 . . . . . . . . . . 11 𝑦𝑦𝐴 𝑧 = 𝐵
10 nfra1 2970 . . . . . . . . . . 11 𝑦𝑦𝐴 𝑥 = 𝐵
11 simpr 476 . . . . . . . . . . . . . 14 (((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
12 rspa 2959 . . . . . . . . . . . . . . 15 ((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) → 𝑧 = 𝐵)
1312adantr 480 . . . . . . . . . . . . . 14 (((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) ∧ 𝑥 = 𝐵) → 𝑧 = 𝐵)
1411, 13eqtr4d 2688 . . . . . . . . . . . . 13 (((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝑧)
15 eqeq1 2655 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥 = 𝐵𝑧 = 𝐵))
1615ralbidv 3015 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑧 = 𝐵))
1716biimprcd 240 . . . . . . . . . . . . . 14 (∀𝑦𝐴 𝑧 = 𝐵 → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
1817ad2antrr 762 . . . . . . . . . . . . 13 (((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) ∧ 𝑥 = 𝐵) → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
1914, 18mpd 15 . . . . . . . . . . . 12 (((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) ∧ 𝑥 = 𝐵) → ∀𝑦𝐴 𝑥 = 𝐵)
2019exp31 629 . . . . . . . . . . 11 (∀𝑦𝐴 𝑧 = 𝐵 → (𝑦𝐴 → (𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵)))
219, 10, 20rexlimd 3055 . . . . . . . . . 10 (∀𝑦𝐴 𝑧 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
2221adantl 481 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
23 r19.2z 4093 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2423ex 449 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2524adantr 480 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2622, 25impbid 202 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
2726eubidv 2518 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
2827ex 449 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑧 = 𝐵 → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)))
2928exlimdv 1901 . . . . 5 (𝐴 ≠ ∅ → (∃𝑧𝑦𝐴 𝑧 = 𝐵 → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)))
30 euex 2522 . . . . . 6 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
3116cbvexv 2311 . . . . . 6 (∃𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑧𝑦𝐴 𝑧 = 𝐵)
3230, 31sylib 208 . . . . 5 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑧𝑦𝐴 𝑧 = 𝐵)
3329, 32impel 484 . . . 4 ((𝐴 ≠ ∅ ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
348, 33mpbird 247 . . 3 ((𝐴 ≠ ∅ ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
3534ex 449 . 2 (𝐴 ≠ ∅ → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
367, 35pm2.61ine 2906 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  ∃!weu 2498  wne 2823  wral 2941  wrex 2942  c0 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822  ax-pow 4873
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-v 3233  df-dif 3610  df-nul 3949
This theorem is referenced by:  reusv2lem3  4901
  Copyright terms: Public domain W3C validator