Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2 Structured version   Visualization version   GIF version

Theorem reusv2 5003
 Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦) that is constant for those 𝑦 ∈ 𝐵 such that 𝜑. The first antecedent ensures that the constant value belongs to the existential uniqueness domain 𝐴, and the second ensures that 𝐶(𝑦) is evaluated for at least one 𝑦. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2 ((∀𝑦𝐵 (𝜑𝐶𝐴) ∧ ∃𝑦𝐵 𝜑) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem reusv2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfrab1 3271 . . . 4 𝑦{𝑦𝐵𝜑}
2 nfcv 2913 . . . 4 𝑧{𝑦𝐵𝜑}
3 nfv 1995 . . . 4 𝑧 𝐶𝐴
4 nfcsb1v 3698 . . . . 5 𝑦𝑧 / 𝑦𝐶
54nfel1 2928 . . . 4 𝑦𝑧 / 𝑦𝐶𝐴
6 csbeq1a 3691 . . . . 5 (𝑦 = 𝑧𝐶 = 𝑧 / 𝑦𝐶)
76eleq1d 2835 . . . 4 (𝑦 = 𝑧 → (𝐶𝐴𝑧 / 𝑦𝐶𝐴))
81, 2, 3, 5, 7cbvralf 3314 . . 3 (∀𝑦 ∈ {𝑦𝐵𝜑}𝐶𝐴 ↔ ∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴)
9 rabid 3264 . . . . . 6 (𝑦 ∈ {𝑦𝐵𝜑} ↔ (𝑦𝐵𝜑))
109imbi1i 338 . . . . 5 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝐶𝐴) ↔ ((𝑦𝐵𝜑) → 𝐶𝐴))
11 impexp 437 . . . . 5 (((𝑦𝐵𝜑) → 𝐶𝐴) ↔ (𝑦𝐵 → (𝜑𝐶𝐴)))
1210, 11bitri 264 . . . 4 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝐶𝐴) ↔ (𝑦𝐵 → (𝜑𝐶𝐴)))
1312ralbii2 3127 . . 3 (∀𝑦 ∈ {𝑦𝐵𝜑}𝐶𝐴 ↔ ∀𝑦𝐵 (𝜑𝐶𝐴))
148, 13bitr3i 266 . 2 (∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴 ↔ ∀𝑦𝐵 (𝜑𝐶𝐴))
15 rabn0 4104 . 2 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∃𝑦𝐵 𝜑)
16 reusv2lem5 5002 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴 ∧ {𝑦𝐵𝜑} ≠ ∅) → (∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶))
17 nfv 1995 . . . . . 6 𝑧 𝑥 = 𝐶
184nfeq2 2929 . . . . . 6 𝑦 𝑥 = 𝑧 / 𝑦𝐶
196eqeq2d 2781 . . . . . 6 (𝑦 = 𝑧 → (𝑥 = 𝐶𝑥 = 𝑧 / 𝑦𝐶))
201, 2, 17, 18, 19cbvrexf 3315 . . . . 5 (∃𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∃𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶)
219anbi1i 610 . . . . . . 7 ((𝑦 ∈ {𝑦𝐵𝜑} ∧ 𝑥 = 𝐶) ↔ ((𝑦𝐵𝜑) ∧ 𝑥 = 𝐶))
22 anass 459 . . . . . . 7 (((𝑦𝐵𝜑) ∧ 𝑥 = 𝐶) ↔ (𝑦𝐵 ∧ (𝜑𝑥 = 𝐶)))
2321, 22bitri 264 . . . . . 6 ((𝑦 ∈ {𝑦𝐵𝜑} ∧ 𝑥 = 𝐶) ↔ (𝑦𝐵 ∧ (𝜑𝑥 = 𝐶)))
2423rexbii2 3187 . . . . 5 (∃𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∃𝑦𝐵 (𝜑𝑥 = 𝐶))
2520, 24bitr3i 266 . . . 4 (∃𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃𝑦𝐵 (𝜑𝑥 = 𝐶))
2625reubii 3277 . . 3 (∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
271, 2, 17, 18, 19cbvralf 3314 . . . . 5 (∀𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∀𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶)
289imbi1i 338 . . . . . . 7 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝑥 = 𝐶) ↔ ((𝑦𝐵𝜑) → 𝑥 = 𝐶))
29 impexp 437 . . . . . . 7 (((𝑦𝐵𝜑) → 𝑥 = 𝐶) ↔ (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
3028, 29bitri 264 . . . . . 6 ((𝑦 ∈ {𝑦𝐵𝜑} → 𝑥 = 𝐶) ↔ (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
3130ralbii2 3127 . . . . 5 (∀𝑦 ∈ {𝑦𝐵𝜑}𝑥 = 𝐶 ↔ ∀𝑦𝐵 (𝜑𝑥 = 𝐶))
3227, 31bitr3i 266 . . . 4 (∀𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∀𝑦𝐵 (𝜑𝑥 = 𝐶))
3332reubii 3277 . . 3 (∃!𝑥𝐴𝑧 ∈ {𝑦𝐵𝜑}𝑥 = 𝑧 / 𝑦𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
3416, 26, 333bitr3g 302 . 2 ((∀𝑧 ∈ {𝑦𝐵𝜑}𝑧 / 𝑦𝐶𝐴 ∧ {𝑦𝐵𝜑} ≠ ∅) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
3514, 15, 34syl2anbr 586 1 ((∀𝑦𝐵 (𝜑𝐶𝐴) ∧ ∃𝑦𝐵 𝜑) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  ∃wrex 3062  ∃!wreu 3063  {crab 3065  ⦋csb 3682  ∅c0 4063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923  ax-pow 4974 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-nul 4064 This theorem is referenced by:  cdleme25dN  36165
 Copyright terms: Public domain W3C validator