![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reust | Structured version Visualization version GIF version |
Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
reust | ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-refld 20174 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
2 | 1 | fveq2i 6357 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘(ℂfld ↾s ℝ)) |
3 | reex 10240 | . . . 4 ⊢ ℝ ∈ V | |
4 | ressuss 22289 | . . . 4 ⊢ (ℝ ∈ V → (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) |
6 | eqid 2761 | . . . . 5 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
7 | 6 | cnflduss 23373 | . . . 4 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
8 | 7 | oveq1i 6825 | . . 3 ⊢ ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
9 | 2, 5, 8 | 3eqtri 2787 | . 2 ⊢ (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
10 | 0re 10253 | . . . 4 ⊢ 0 ∈ ℝ | |
11 | 10 | ne0ii 4067 | . . 3 ⊢ ℝ ≠ ∅ |
12 | cnxmet 22798 | . . . 4 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
13 | xmetpsmet 22375 | . . . 4 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ)) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (abs ∘ − ) ∈ (PsMet‘ℂ) |
15 | ax-resscn 10206 | . . 3 ⊢ ℝ ⊆ ℂ | |
16 | restmetu 22597 | . . 3 ⊢ ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))) | |
17 | 11, 14, 15, 16 | mp3an 1573 | . 2 ⊢ ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
18 | reds 20185 | . . . 4 ⊢ (abs ∘ − ) = (dist‘ℝfld) | |
19 | 18 | reseq1i 5548 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ)) |
20 | 19 | fveq2i 6357 | . 2 ⊢ (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
21 | 9, 17, 20 | 3eqtri 2787 | 1 ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 ≠ wne 2933 Vcvv 3341 ⊆ wss 3716 ∅c0 4059 × cxp 5265 ↾ cres 5269 ∘ ccom 5271 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 ℝcr 10148 0cc0 10149 − cmin 10479 abscabs 14194 ↾s cress 16081 distcds 16173 ↾t crest 16304 PsMetcpsmet 19953 ∞Metcxmt 19954 metUnifcmetu 19960 ℂfldccnfld 19969 ℝfldcrefld 20173 UnifStcuss 22279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-rp 12047 df-xneg 12160 df-xadd 12161 df-xmul 12162 df-ico 12395 df-fz 12541 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-rest 16306 df-psmet 19961 df-xmet 19962 df-met 19963 df-fbas 19966 df-fg 19967 df-metu 19968 df-cnfld 19970 df-refld 20174 df-fil 21872 df-ust 22226 df-uss 22282 |
This theorem is referenced by: recusp 23391 rerrext 30384 |
Copyright terms: Public domain | W3C validator |