MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reust Structured version   Visualization version   GIF version

Theorem reust 23390
Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
reust (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))

Proof of Theorem reust
StepHypRef Expression
1 df-refld 20174 . . . 4 fld = (ℂflds ℝ)
21fveq2i 6357 . . 3 (UnifSt‘ℝfld) = (UnifSt‘(ℂflds ℝ))
3 reex 10240 . . . 4 ℝ ∈ V
4 ressuss 22289 . . . 4 (ℝ ∈ V → (UnifSt‘(ℂflds ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)))
53, 4ax-mp 5 . . 3 (UnifSt‘(ℂflds ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))
6 eqid 2761 . . . . 5 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
76cnflduss 23373 . . . 4 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
87oveq1i 6825 . . 3 ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ))
92, 5, 83eqtri 2787 . 2 (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ))
10 0re 10253 . . . 4 0 ∈ ℝ
1110ne0ii 4067 . . 3 ℝ ≠ ∅
12 cnxmet 22798 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
13 xmetpsmet 22375 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
1412, 13ax-mp 5 . . 3 (abs ∘ − ) ∈ (PsMet‘ℂ)
15 ax-resscn 10206 . . 3 ℝ ⊆ ℂ
16 restmetu 22597 . . 3 ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))))
1711, 14, 15, 16mp3an 1573 . 2 ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))
18 reds 20185 . . . 4 (abs ∘ − ) = (dist‘ℝfld)
1918reseq1i 5548 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
2019fveq2i 6357 . 2 (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
219, 17, 203eqtri 2787 1 (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2140  wne 2933  Vcvv 3341  wss 3716  c0 4059   × cxp 5265  cres 5269  ccom 5271  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  cmin 10479  abscabs 14194  s cress 16081  distcds 16173  t crest 16304  PsMetcpsmet 19953  ∞Metcxmt 19954  metUnifcmetu 19960  fldccnfld 19969  fldcrefld 20173  UnifStcuss 22279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ico 12395  df-fz 12541  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-rest 16306  df-psmet 19961  df-xmet 19962  df-met 19963  df-fbas 19966  df-fg 19967  df-metu 19968  df-cnfld 19970  df-refld 20174  df-fil 21872  df-ust 22226  df-uss 22282
This theorem is referenced by:  recusp  23391  rerrext  30384
  Copyright terms: Public domain W3C validator