![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reurmo | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reurmo | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3298 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simprbi 483 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3051 ∃!wreu 3052 ∃*wrmo 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-eu 2611 df-mo 2612 df-rex 3056 df-reu 3057 df-rmo 3058 |
This theorem is referenced by: reuxfrd 5042 enqeq 9948 eqsqrtd 14306 efgred2 18366 0frgp 18392 frgpnabllem2 18477 frgpcyg 20124 lmieu 25875 reuxfr4d 29638 poimirlem25 33747 poimirlem26 33748 reuimrmo 41684 2reurmo 41688 2rexreu 41691 2reu2 41693 |
Copyright terms: Public domain | W3C validator |