Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccats1lem Structured version   Visualization version   GIF version

Theorem reuccats1lem 13525
 Description: Lemma for reuccats1 13526. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Proof shortened by AV, 15-Jan-2020.)
Assertion
Ref Expression
reuccats1lem (((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) ∧ (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Distinct variable groups:   𝑆,𝑠   𝑥,𝑈   𝑉,𝑠,𝑥   𝑊,𝑠,𝑥   𝑋,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑠)

Proof of Theorem reuccats1lem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2718 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 fveq2 6229 . . . . . . . . . 10 (𝑥 = 𝑈 → (#‘𝑥) = (#‘𝑈))
32eqeq1d 2653 . . . . . . . . 9 (𝑥 = 𝑈 → ((#‘𝑥) = ((#‘𝑊) + 1) ↔ (#‘𝑈) = ((#‘𝑊) + 1)))
41, 3anbi12d 747 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
54rspcv 3336 . . . . . . 7 (𝑈𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
65adantl 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
7 simpl 472 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑈𝑋) → 𝑊 ∈ Word 𝑉)
87adantr 480 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
9 simpl 472 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
109adantl 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉)
11 simprr 811 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (#‘𝑈) = ((#‘𝑊) + 1))
12 ccats1swrdeqrex 13524 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
138, 10, 11, 12syl3anc 1366 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
14 s1eq 13416 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑢 → ⟨“𝑠”⟩ = ⟨“𝑢”⟩)
1514oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑢 → (𝑊 ++ ⟨“𝑠”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1615eleq1d 2715 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
17 eqeq2 2662 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → (𝑆 = 𝑠𝑆 = 𝑢))
1816, 17imbi12d 333 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ↔ ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
1918rspcv 3336 . . . . . . . . . . . . . 14 (𝑢𝑉 → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
20 eleq1 2718 . . . . . . . . . . . . . . . . . 18 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
2120biimpac 502 . . . . . . . . . . . . . . . . 17 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋)
22 s1eq 13416 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑆 → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2322eqcoms 2659 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 = 𝑢 → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2423oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 = 𝑢 → (𝑊 ++ ⟨“𝑢”⟩) = (𝑊 ++ ⟨“𝑆”⟩))
2524eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 = 𝑢 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) ↔ 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2625biimpd 219 . . . . . . . . . . . . . . . . . . . 20 (𝑆 = 𝑢 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2726imim2i 16 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2827com13 88 . . . . . . . . . . . . . . . . . 18 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2928adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3021, 29mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
3130ex 449 . . . . . . . . . . . . . . 15 (𝑈𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3231com23 86 . . . . . . . . . . . . . 14 (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3319, 32sylan9r 691 . . . . . . . . . . . . 13 ((𝑈𝑋𝑢𝑉) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3433com23 86 . . . . . . . . . . . 12 ((𝑈𝑋𝑢𝑉) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3534rexlimdva 3060 . . . . . . . . . . 11 (𝑈𝑋 → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3635adantl 481 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3736adantr 480 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3813, 37syld 47 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3938com23 86 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
4039ex 449 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
416, 40syld 47 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4241com23 86 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4342impd 446 . . 3 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
44433adant3 1101 . 2 ((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) → ((∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
4544imp 444 1 (((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) ∧ (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  ⟨cop 4216  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  #chash 13157  Word cword 13323   ++ cconcat 13325  ⟨“cs1 13326   substr csubstr 13327 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335 This theorem is referenced by:  reuccats1  13526
 Copyright terms: Public domain W3C validator