![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 3266 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2139 ∃!wreu 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-12 2196 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-eu 2611 df-reu 3057 |
This theorem is referenced by: 2reu5lem1 3554 reusv2lem5 5022 reusv2 5023 oaf1o 7814 aceq2 9152 lubfval 17199 lubeldm 17202 glbfval 17212 glbeldm 17215 oduglb 17360 odulub 17362 usgredg2vlem1 26337 usgredg2vlem2 26338 frcond1 27441 frcond2 27442 n4cyclfrgr 27466 cnlnadjlem3 29258 disjrdx 29732 lshpsmreu 34917 2reu7 41715 2reu8 41716 |
Copyright terms: Public domain | W3C validator |