Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuan Structured version   Visualization version   GIF version

Theorem reuan 41694
Description: Introduction of a conjunct into restricted uniqueness quantifier, analogous to euan 2678. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Hypothesis
Ref Expression
rmoanim.1 𝑥𝜑
Assertion
Ref Expression
reuan (∃!𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝐴 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reuan
StepHypRef Expression
1 rmoanim.1 . . . . . 6 𝑥𝜑
2 simpl 468 . . . . . . 7 ((𝜑𝜓) → 𝜑)
32a1i 11 . . . . . 6 (𝑥𝐴 → ((𝜑𝜓) → 𝜑))
41, 3rexlimi 3171 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) → 𝜑)
54adantr 466 . . . 4 ((∃𝑥𝐴 (𝜑𝜓) ∧ ∃*𝑥𝐴 (𝜑𝜓)) → 𝜑)
6 simpr 471 . . . . . 6 ((𝜑𝜓) → 𝜓)
76reximi 3158 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) → ∃𝑥𝐴 𝜓)
87adantr 466 . . . 4 ((∃𝑥𝐴 (𝜑𝜓) ∧ ∃*𝑥𝐴 (𝜑𝜓)) → ∃𝑥𝐴 𝜓)
9 nfre1 3152 . . . . . 6 𝑥𝑥𝐴 (𝜑𝜓)
104adantr 466 . . . . . . . . 9 ((∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → 𝜑)
1110a1d 25 . . . . . . . 8 ((∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜓𝜑))
1211ancrd 533 . . . . . . 7 ((∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜓 → (𝜑𝜓)))
136, 12impbid2 216 . . . . . 6 ((∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → ((𝜑𝜓) ↔ 𝜓))
149, 13rmobida 3277 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 (𝜑𝜓) ↔ ∃*𝑥𝐴 𝜓))
1514biimpa 462 . . . 4 ((∃𝑥𝐴 (𝜑𝜓) ∧ ∃*𝑥𝐴 (𝜑𝜓)) → ∃*𝑥𝐴 𝜓)
165, 8, 15jca32 499 . . 3 ((∃𝑥𝐴 (𝜑𝜓) ∧ ∃*𝑥𝐴 (𝜑𝜓)) → (𝜑 ∧ (∃𝑥𝐴 𝜓 ∧ ∃*𝑥𝐴 𝜓)))
17 reu5 3307 . . 3 (∃!𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 (𝜑𝜓) ∧ ∃*𝑥𝐴 (𝜑𝜓)))
18 reu5 3307 . . . 4 (∃!𝑥𝐴 𝜓 ↔ (∃𝑥𝐴 𝜓 ∧ ∃*𝑥𝐴 𝜓))
1918anbi2i 601 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) ↔ (𝜑 ∧ (∃𝑥𝐴 𝜓 ∧ ∃*𝑥𝐴 𝜓)))
2016, 17, 193imtr4i 281 . 2 (∃!𝑥𝐴 (𝜑𝜓) → (𝜑 ∧ ∃!𝑥𝐴 𝜓))
21 ibar 512 . . . . 5 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
2221adantr 466 . . . 4 ((𝜑𝑥𝐴) → (𝜓 ↔ (𝜑𝜓)))
231, 22reubida 3272 . . 3 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 (𝜑𝜓)))
2423biimpa 462 . 2 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥𝐴 (𝜑𝜓))
2520, 24impbii 199 1 (∃!𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wnf 1855  wcel 2144  wrex 3061  ∃!wreu 3062  ∃*wrmo 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-10 2173  ax-12 2202
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-ex 1852  df-nf 1857  df-eu 2621  df-mo 2622  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068
This theorem is referenced by:  2reu7  41705  2reu8  41706
  Copyright terms: Public domain W3C validator