![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2633 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3057 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3056 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3058 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 735 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 292 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 ∃!weu 2607 ∃*wmo 2608 ∃wrex 3051 ∃!wreu 3052 ∃*wrmo 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-eu 2611 df-mo 2612 df-rex 3056 df-reu 3057 df-rmo 3058 |
This theorem is referenced by: reurex 3299 reurmo 3300 reu4 3541 reueq 3545 reusv1 5015 reusv1OLD 5016 wereu 5262 wereu2 5263 fncnv 6123 moriotass 6803 supeu 8525 infeu 8567 resqreu 14192 sqrtneg 14207 sqreu 14299 catideu 16537 poslubd 17349 ismgmid 17465 mndideu 17505 evlseu 19718 frlmup4 20342 ply1divalg 24096 tglinethrueu 25733 foot 25813 mideu 25829 nbusgredgeu 26466 pjhtheu 28562 pjpreeq 28566 cnlnadjeui 29245 cvmliftlem14 31586 cvmlift2lem13 31604 cvmlift3 31617 nosupno 32155 nosupbday 32157 nosupbnd1 32166 nosupbnd2 32168 linethrueu 32569 phpreu 33706 poimirlem18 33740 poimirlem21 33743 2reu5a 41683 reuan 41686 2reurex 41687 2rexreu 41691 2reu1 41692 |
Copyright terms: Public domain | W3C validator |