![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retanhcl | Structured version Visualization version GIF version |
Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
Ref | Expression |
---|---|
retanhcl | ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10208 | . . . . . 6 ⊢ i ∈ ℂ | |
2 | recn 10239 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | mulcl 10233 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
4 | 1, 2, 3 | sylancr 698 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
5 | rpcoshcl 15107 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | |
6 | 5 | rpne0d 12091 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ≠ 0) |
7 | tanval 15078 | . . . . 5 ⊢ (((i · 𝐴) ∈ ℂ ∧ (cos‘(i · 𝐴)) ≠ 0) → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴)))) | |
8 | 4, 6, 7 | syl2anc 696 | . . . 4 ⊢ (𝐴 ∈ ℝ → (tan‘(i · 𝐴)) = ((sin‘(i · 𝐴)) / (cos‘(i · 𝐴)))) |
9 | 8 | oveq1d 6830 | . . 3 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i)) |
10 | 4 | sincld 15080 | . . . 4 ⊢ (𝐴 ∈ ℝ → (sin‘(i · 𝐴)) ∈ ℂ) |
11 | recoshcl 15108 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ) | |
12 | 11 | recnd 10281 | . . . 4 ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℂ) |
13 | 1 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → i ∈ ℂ) |
14 | ine0 10678 | . . . . 5 ⊢ i ≠ 0 | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → i ≠ 0) |
16 | 10, 12, 13, 6, 15 | divdiv32d 11039 | . . 3 ⊢ (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / (cos‘(i · 𝐴))) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴)))) |
17 | 9, 16 | eqtrd 2795 | . 2 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) = (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴)))) |
18 | resinhcl 15106 | . . 3 ⊢ (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ) | |
19 | 18, 5 | rerpdivcld 12117 | . 2 ⊢ (𝐴 ∈ ℝ → (((sin‘(i · 𝐴)) / i) / (cos‘(i · 𝐴))) ∈ ℝ) |
20 | 17, 19 | eqeltrd 2840 | 1 ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 ℝcr 10148 0cc0 10149 ici 10151 · cmul 10154 / cdiv 10897 sincsin 15014 cosccos 15015 tanctan 15016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-ico 12395 df-fz 12541 df-fzo 12681 df-fl 12808 df-seq 13017 df-exp 13076 df-fac 13276 df-bc 13305 df-hash 13333 df-shft 14027 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-limsup 14422 df-clim 14439 df-rlim 14440 df-sum 14637 df-ef 15018 df-sin 15020 df-cos 15021 df-tan 15022 |
This theorem is referenced by: tanhbnd 15111 tanregt0 24506 |
Copyright terms: Public domain | W3C validator |