![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resundir | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 3983 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5230 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 5230 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 5230 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | uneq12i 3873 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2756 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 Vcvv 3304 ∪ cun 3678 ∩ cin 3679 × cxp 5216 ↾ cres 5220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-un 3685 df-in 3687 df-res 5230 |
This theorem is referenced by: imaundir 5656 fresaunres2 6189 fvunsn 6561 fvsnun1 6564 fvsnun2 6565 fsnunfv 6569 fsnunres 6570 wfrlem14 7548 domss2 8235 axdc3lem4 9388 fseq1p1m1 12528 hashgval 13235 hashinf 13237 setsres 16024 setscom 16026 setsid 16037 pwssplit1 19182 ex-res 27530 funresdm1 29644 padct 29727 eulerpartlemt 30663 nosupbnd2lem1 32088 noetalem2 32091 noetalem3 32092 poimirlem3 33644 mapfzcons1 37699 diophrw 37741 eldioph2lem1 37742 eldioph2lem2 37743 diophin 37755 pwssplit4 38078 |
Copyright terms: Public domain | W3C validator |