![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resundi | Structured version Visualization version GIF version |
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 5327 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
2 | 1 | ineq2i 3952 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) |
3 | indi 4014 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
4 | 2, 3 | eqtri 2780 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
5 | df-res 5276 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
6 | df-res 5276 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
7 | df-res 5276 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
8 | 6, 7 | uneq12i 3906 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
9 | 4, 5, 8 | 3eqtr4i 2790 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 Vcvv 3338 ∪ cun 3711 ∩ cin 3712 × cxp 5262 ↾ cres 5266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-v 3340 df-un 3718 df-in 3720 df-opab 4863 df-xp 5270 df-res 5276 |
This theorem is referenced by: imaundi 5701 relresfld 5821 resasplit 6233 fresaunres2 6235 residpr 6570 fnsnsplit 6612 tfrlem16 7656 mapunen 8292 fnfi 8401 fseq1p1m1 12605 resunimafz0 13419 gsum2dlem2 18568 dprd2da 18639 evlseu 19716 ptuncnv 21810 mbfres2 23609 ffsrn 29811 resf1o 29812 cvmliftlem10 31581 eqfunresadj 31964 nosupbnd2lem1 32165 poimirlem9 33729 eldioph4b 37875 pwssplit4 38159 undmrnresiss 38410 relexp0a 38508 rnresun 39859 |
Copyright terms: Public domain | W3C validator |