MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resub Structured version   Visualization version   GIF version

Theorem resub 14075
Description: Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
Assertion
Ref Expression
resub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))

Proof of Theorem resub
StepHypRef Expression
1 negcl 10483 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 readd 14074 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + (ℜ‘-𝐵)))
31, 2sylan2 580 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + (ℜ‘-𝐵)))
4 reneg 14073 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵))
54adantl 467 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
65oveq2d 6809 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (ℜ‘-𝐵)) = ((ℜ‘𝐴) + -(ℜ‘𝐵)))
73, 6eqtrd 2805 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = ((ℜ‘𝐴) + -(ℜ‘𝐵)))
8 negsub 10531 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
98fveq2d 6336 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + -𝐵)) = (ℜ‘(𝐴𝐵)))
10 recl 14058 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1110recnd 10270 . . 3 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
12 recl 14058 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1312recnd 10270 . . 3 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
14 negsub 10531 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → ((ℜ‘𝐴) + -(ℜ‘𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
1511, 13, 14syl2an 583 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + -(ℜ‘𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
167, 9, 153eqtr3d 2813 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  cc 10136   + caddc 10141  cmin 10468  -cneg 10469  cre 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-2 11281  df-cj 14047  df-re 14048  df-im 14049
This theorem is referenced by:  resubd  14164  recn2  14539  caucvgr  14614  tanregt0  24506  logcnlem4  24612  isosctrlem1  24769  acoscos  24841  acosbnd  24848  atanlogsublem  24863  isosctrlem1ALT  39692
  Copyright terms: Public domain W3C validator