![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 20841 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) |
3 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
4 | toponmax 20853 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
5 | ssexg 4912 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
6 | 3, 4, 5 | syl2anr 496 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
7 | resttop 21087 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
8 | 2, 6, 7 | syl2anc 696 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
9 | simpr 479 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
10 | sseqin2 3925 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
11 | 9, 10 | sylib 208 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
12 | simpl 474 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
13 | 4 | adantr 472 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
14 | elrestr 16212 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
15 | 12, 6, 13, 14 | syl3anc 1439 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
16 | 11, 15 | eqeltrrd 2804 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
17 | elssuni 4575 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
19 | restval 16210 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
20 | 6, 19 | syldan 488 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
21 | inss2 3942 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
22 | vex 3307 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
23 | 22 | inex1 4907 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
24 | 23 | elpw 4272 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
25 | 21, 24 | mpbir 221 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
26 | 25 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
27 | eqid 2724 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) | |
28 | 26, 27 | fmptd 6500 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
29 | frn 6166 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴 → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) | |
30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
31 | 20, 30 | eqsstrd 3745 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
32 | sspwuni 4719 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
33 | 31, 32 | sylib 208 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
34 | 18, 33 | eqssd 3726 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
35 | istopon 20840 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
36 | 8, 34, 35 | sylanbrc 701 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∩ cin 3679 ⊆ wss 3680 𝒫 cpw 4266 ∪ cuni 4544 ↦ cmpt 4837 ran crn 5219 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ↾t crest 16204 Topctop 20821 TopOnctopon 20838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-oadd 7684 df-er 7862 df-en 8073 df-fin 8076 df-fi 8433 df-rest 16206 df-topgen 16227 df-top 20822 df-topon 20839 df-bases 20873 |
This theorem is referenced by: restuni 21089 stoig 21090 restsn2 21098 restlp 21110 restperf 21111 perfopn 21112 cnrest 21212 cnrest2 21213 cnrest2r 21214 cnpresti 21215 cnprest 21216 cnprest2 21217 restcnrm 21289 connsuba 21346 kgentopon 21464 1stckgenlem 21479 kgen2ss 21481 kgencn 21482 xkoinjcn 21613 qtoprest 21643 flimrest 21909 fclsrest 21950 flfcntr 21969 symgtgp 22027 dvrcn 22109 sszcld 22742 divcn 22793 cncfmptc 22836 cncfmptid 22837 cncfmpt2f 22839 cdivcncf 22842 cnmpt2pc 22849 icchmeo 22862 htpycc 22901 pcocn 22938 pcohtpylem 22940 pcopt 22943 pcopt2 22944 pcoass 22945 pcorevlem 22947 relcmpcmet 23236 limcvallem 23755 ellimc2 23761 limcres 23770 cnplimc 23771 cnlimc 23772 limccnp 23775 limccnp2 23776 dvbss 23785 perfdvf 23787 dvreslem 23793 dvres2lem 23794 dvcnp2 23803 dvcn 23804 dvaddbr 23821 dvmulbr 23822 dvcmulf 23828 dvmptres2 23845 dvmptcmul 23847 dvmptntr 23854 dvmptfsum 23858 dvcnvlem 23859 dvcnv 23860 lhop1lem 23896 lhop2 23898 lhop 23899 dvcnvrelem2 23901 dvcnvre 23902 ftc1lem3 23921 ftc1cn 23926 taylthlem1 24247 ulmdvlem3 24276 psercn 24300 abelth 24315 logcn 24513 cxpcn 24606 cxpcn2 24607 cxpcn3 24609 resqrtcn 24610 sqrtcn 24611 loglesqrt 24619 xrlimcnp 24815 efrlim 24816 ftalem3 24921 xrge0pluscn 30216 xrge0mulc1cn 30217 lmlimxrge0 30224 pnfneige0 30227 lmxrge0 30228 esumcvg 30378 cxpcncf1 30903 cvxpconn 31452 cvxsconn 31453 cvmsf1o 31482 cvmliftlem8 31502 cvmlift2lem9a 31513 cvmlift2lem11 31523 cvmlift3lem6 31534 ivthALT 32557 poimir 33674 broucube 33675 cnambfre 33690 ftc1cnnc 33716 areacirclem2 33733 areacirclem4 33735 fsumcncf 40511 ioccncflimc 40518 cncfuni 40519 icccncfext 40520 icocncflimc 40522 cncfiooicclem1 40526 cxpcncf2 40533 dvmptconst 40549 dvmptidg 40551 dvresntr 40552 itgsubsticclem 40611 dirkercncflem2 40741 dirkercncflem4 40743 fourierdlem32 40776 fourierdlem33 40777 fourierdlem62 40805 fourierdlem93 40836 fourierdlem101 40844 |
Copyright terms: Public domain | W3C validator |