MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Structured version   Visualization version   GIF version

Theorem resttop 21012
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 21011 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴))
2 tgtop 20825 . . . . 5 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘𝐽) = 𝐽)
43oveq1d 6705 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽t 𝐴))
51, 4eqtrd 2685 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = (𝐽t 𝐴))
6 topbas 20824 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
76adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → 𝐽 ∈ TopBases)
8 restbas 21010 . . 3 (𝐽 ∈ TopBases → (𝐽t 𝐴) ∈ TopBases)
9 tgcl 20821 . . 3 ((𝐽t 𝐴) ∈ TopBases → (topGen‘(𝐽t 𝐴)) ∈ Top)
107, 8, 93syl 18 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) ∈ Top)
115, 10eqeltrrd 2731 1 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  t crest 16128  topGenctg 16145  Topctop 20746  TopBasesctb 20797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-bases 20798
This theorem is referenced by:  resttopon  21013  resttopon2  21020  rest0  21021  restcld  21024  neitr  21032  restcls  21033  restntr  21034  ordtrest  21054  cmpsub  21251  fiuncmp  21255  1stcrest  21304  subislly  21332  llyrest  21336  nllyrest  21337  toplly  21341  cldllycmp  21346  kgencmp2  21397  llycmpkgen2  21401  1stckgen  21405  txkgen  21503  cnextfres1  21919  zdis  22666  cnmpt2pc  22774  dvbss  23710  dvreslem  23718  dvres2lem  23719  dvcnp2  23728  dvmptres  23771  ulmdvlem3  24201  psercn  24225  abelth  24240  ordtrestNEW  30095  cvxpconn  31350  cvmscld  31381  ptrest  33538  poimirlem29  33568  cnambfre  33588  limcresiooub  40192  limcresioolb  40193  cncfuni  40417  cncfiooicclem1  40424  fourierdlem32  40674  fourierdlem33  40675  fourierdlem48  40689  fourierdlem49  40690  fouriersw  40766
  Copyright terms: Public domain W3C validator