MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Visualization version   GIF version

Theorem restnlly 21333
Description: If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
Assertion
Ref Expression
restnlly (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restnlly
Dummy variables 𝑘 𝑠 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 21324 . . . . . 6 (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Top)
21adantl 481 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Top)
3 nlly2i 21327 . . . . . . . . 9 ((𝑘 ∈ 𝑛-Locally 𝐴𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
433adant1l 1358 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
5 simprl 809 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑘)
6 simprr2 1130 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑠)
7 simplr 807 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑦)
87elpwid 4203 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠𝑦)
96, 8sstrd 3646 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑦)
10 selpw 4198 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
119, 10sylibr 224 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝒫 𝑦)
125, 11elind 3831 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ∩ 𝒫 𝑦))
13 simprr1 1129 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑢𝑥)
14 simpll1 1120 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝜑𝑘 ∈ 𝑛-Locally 𝐴))
1514simprd 478 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑘 ∈ 𝑛-Locally 𝐴)
1615, 1syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑘 ∈ Top)
17 restabs 21017 . . . . . . . . . . . . . 14 ((𝑘 ∈ Top ∧ 𝑥𝑠𝑠 ∈ 𝒫 𝑦) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
1816, 6, 7, 17syl3anc 1366 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
19 simprr3 1131 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑠) ∈ 𝐴)
2014simpld 474 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝜑)
21 restlly.1 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
2221expr 642 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
2322ralrimiva 2995 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
2420, 23syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
25 df-ss 3621 . . . . . . . . . . . . . . . 16 (𝑥𝑠 ↔ (𝑥𝑠) = 𝑥)
266, 25sylib 208 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) = 𝑥)
27 elrestr 16136 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦𝑥𝑘) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2816, 7, 5, 27syl3anc 1366 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2926, 28eqeltrrd 2731 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘t 𝑠))
30 eleq2 2719 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → (𝑥𝑗𝑥 ∈ (𝑘t 𝑠)))
31 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑘t 𝑠) → (𝑗t 𝑥) = ((𝑘t 𝑠) ↾t 𝑥))
3231eleq1d 2715 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → ((𝑗t 𝑥) ∈ 𝐴 ↔ ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴))
3330, 32imbi12d 333 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘t 𝑠) → ((𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴) ↔ (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)))
3433rspcv 3336 . . . . . . . . . . . . . 14 ((𝑘t 𝑠) ∈ 𝐴 → (∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴) → (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)))
3519, 24, 29, 34syl3c 66 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)
3618, 35eqeltrrd 2731 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑥) ∈ 𝐴)
3712, 13, 36jca32 557 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
3837ex 449 . . . . . . . . . 10 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴)) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))))
3938reximdv2 3043 . . . . . . . . 9 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → (∃𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
4039rexlimdva 3060 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → (∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
414, 40mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
42413expb 1285 . . . . . 6 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ (𝑦𝑘𝑢𝑦)) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
4342ralrimivva 3000 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
44 islly 21319 . . . . 5 (𝑘 ∈ Locally 𝐴 ↔ (𝑘 ∈ Top ∧ ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
452, 43, 44sylanbrc 699 . . . 4 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Locally 𝐴)
4645ex 449 . . 3 (𝜑 → (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Locally 𝐴))
4746ssrdv 3642 . 2 (𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴)
48 llyssnlly 21329 . . 3 Locally 𝐴 ⊆ 𝑛-Locally 𝐴
4948a1i 11 . 2 (𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴)
5047, 49eqssd 3653 1 (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cin 3606  wss 3607  𝒫 cpw 4191  (class class class)co 6690  t crest 16128  Topctop 20746  Locally clly 21315  𝑛-Locally cnlly 21316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-rest 16130  df-top 20747  df-nei 20950  df-lly 21317  df-nlly 21318
This theorem is referenced by:  loclly  21338  hausnlly  21344
  Copyright terms: Public domain W3C validator