![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restcldr | Structured version Visualization version GIF version |
Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
restcldr | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 21050 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | eqid 2770 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | cldss 21053 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
4 | 2 | restcld 21196 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
5 | 1, 3, 4 | syl2anc 565 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
6 | incld 21067 | . . . . . 6 ⊢ ((𝑣 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽)) | |
7 | 6 | ancoms 455 | . . . . 5 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽)) |
8 | eleq1 2837 | . . . . 5 ⊢ (𝐵 = (𝑣 ∩ 𝐴) → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝑣 ∩ 𝐴) ∈ (Clsd‘𝐽))) | |
9 | 7, 8 | syl5ibrcom 237 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝐵 = (𝑣 ∩ 𝐴) → 𝐵 ∈ (Clsd‘𝐽))) |
10 | 9 | rexlimdva 3178 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴) → 𝐵 ∈ (Clsd‘𝐽))) |
11 | 5, 10 | sylbid 230 | . 2 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) → 𝐵 ∈ (Clsd‘𝐽))) |
12 | 11 | imp 393 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 ∩ cin 3720 ⊆ wss 3721 ∪ cuni 4572 ‘cfv 6031 (class class class)co 6792 ↾t crest 16288 Topctop 20917 Clsdccld 21040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-oadd 7716 df-er 7895 df-en 8109 df-fin 8112 df-fi 8472 df-rest 16290 df-topgen 16311 df-top 20918 df-topon 20935 df-bases 20970 df-cld 21043 |
This theorem is referenced by: paste 21318 qtoprest 21740 zcld2 22837 sszcld 22839 logdmopn 24615 dvasin 33821 dvacos 33822 dvreasin 33823 dvreacos 33824 |
Copyright terms: Public domain | W3C validator |