![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restcldi | Structured version Visualization version GIF version |
Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
restcldi.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restcldi | ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1132 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘𝐽)) | |
2 | dfss 3731 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
3 | 2 | biimpi 206 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
4 | 3 | 3ad2ant3 1130 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 = (𝐵 ∩ 𝐴)) |
5 | ineq1 3951 | . . . . 5 ⊢ (𝑣 = 𝐵 → (𝑣 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
6 | 5 | eqeq2d 2771 | . . . 4 ⊢ (𝑣 = 𝐵 → (𝐵 = (𝑣 ∩ 𝐴) ↔ 𝐵 = (𝐵 ∩ 𝐴))) |
7 | 6 | rspcev 3450 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 = (𝐵 ∩ 𝐴)) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴)) |
8 | 1, 4, 7 | syl2anc 696 | . 2 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴)) |
9 | cldrcl 21053 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
10 | 9 | 3ad2ant2 1129 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) |
11 | simp1 1131 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝑋) | |
12 | restcldi.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
13 | 12 | restcld 21199 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
14 | 10, 11, 13 | syl2anc 696 | . 2 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
15 | 8, 14 | mpbird 247 | 1 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ∃wrex 3052 ∩ cin 3715 ⊆ wss 3716 ∪ cuni 4589 ‘cfv 6050 (class class class)co 6815 ↾t crest 16304 Topctop 20921 Clsdccld 21043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-oadd 7735 df-er 7914 df-en 8125 df-fin 8128 df-fi 8485 df-rest 16306 df-topgen 16327 df-top 20922 df-topon 20939 df-bases 20973 df-cld 21046 |
This theorem is referenced by: txkgen 21678 qtoprest 21743 cnmpt2pc 22949 cnheiborlem 22975 abelth 24415 cvmliftlem10 31605 |
Copyright terms: Public domain | W3C validator |