MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcld Structured version   Visualization version   GIF version

Theorem restcld 21024
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restcld.1 𝑋 = 𝐽
Assertion
Ref Expression
restcld ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem restcld
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑆𝑋𝑆𝑋)
2 restcld.1 . . . . . 6 𝑋 = 𝐽
32topopn 20759 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
4 ssexg 4837 . . . . 5 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
51, 3, 4syl2anr 494 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
6 resttop 21012 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
75, 6syldan 486 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
8 eqid 2651 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
98iscld 20879 . . 3 ((𝐽t 𝑆) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
107, 9syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
112restuni 21014 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
1211sseq2d 3666 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴𝑆𝐴 (𝐽t 𝑆)))
1311difeq1d 3760 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐴) = ( (𝐽t 𝑆) ∖ 𝐴))
1413eleq1d 2715 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆)))
1512, 14anbi12d 747 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
16 elrest 16135 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
175, 16syldan 486 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
1817anbi2d 740 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆))))
192opncld 20885 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑋𝑜) ∈ (Clsd‘𝐽))
2019adantlr 751 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑜𝐽) → (𝑋𝑜) ∈ (Clsd‘𝐽))
2120adantlr 751 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) → (𝑋𝑜) ∈ (Clsd‘𝐽))
2221adantr 480 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑜) ∈ (Clsd‘𝐽))
23 incom 3838 . . . . . . . . . . . . 13 (𝑋𝑆) = (𝑆𝑋)
24 df-ss 3621 . . . . . . . . . . . . . 14 (𝑆𝑋 ↔ (𝑆𝑋) = 𝑆)
2524biimpi 206 . . . . . . . . . . . . 13 (𝑆𝑋 → (𝑆𝑋) = 𝑆)
2623, 25syl5eq 2697 . . . . . . . . . . . 12 (𝑆𝑋 → (𝑋𝑆) = 𝑆)
2726ad4antlr 771 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑆) = 𝑆)
2827difeq1d 3760 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ((𝑋𝑆) ∖ 𝑜) = (𝑆𝑜))
29 difeq2 3755 . . . . . . . . . . . 12 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆 ∖ (𝑜𝑆)))
30 difindi 3914 . . . . . . . . . . . . 13 (𝑆 ∖ (𝑜𝑆)) = ((𝑆𝑜) ∪ (𝑆𝑆))
31 difid 3981 . . . . . . . . . . . . . 14 (𝑆𝑆) = ∅
3231uneq2i 3797 . . . . . . . . . . . . 13 ((𝑆𝑜) ∪ (𝑆𝑆)) = ((𝑆𝑜) ∪ ∅)
33 un0 4000 . . . . . . . . . . . . 13 ((𝑆𝑜) ∪ ∅) = (𝑆𝑜)
3430, 32, 333eqtri 2677 . . . . . . . . . . . 12 (𝑆 ∖ (𝑜𝑆)) = (𝑆𝑜)
3529, 34syl6eq 2701 . . . . . . . . . . 11 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
3635adantl 481 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
37 dfss4 3891 . . . . . . . . . . . 12 (𝐴𝑆 ↔ (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3837biimpi 206 . . . . . . . . . . 11 (𝐴𝑆 → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3938ad3antlr 767 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
4028, 36, 393eqtr2rd 2692 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑆) ∖ 𝑜))
4123difeq1i 3757 . . . . . . . . . 10 ((𝑋𝑆) ∖ 𝑜) = ((𝑆𝑋) ∖ 𝑜)
42 indif2 3903 . . . . . . . . . 10 (𝑆 ∩ (𝑋𝑜)) = ((𝑆𝑋) ∖ 𝑜)
43 incom 3838 . . . . . . . . . 10 (𝑆 ∩ (𝑋𝑜)) = ((𝑋𝑜) ∩ 𝑆)
4441, 42, 433eqtr2i 2679 . . . . . . . . 9 ((𝑋𝑆) ∖ 𝑜) = ((𝑋𝑜) ∩ 𝑆)
4540, 44syl6eq 2701 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑜) ∩ 𝑆))
46 ineq1 3840 . . . . . . . . . 10 (𝑥 = (𝑋𝑜) → (𝑥𝑆) = ((𝑋𝑜) ∩ 𝑆))
4746eqeq2d 2661 . . . . . . . . 9 (𝑥 = (𝑋𝑜) → (𝐴 = (𝑥𝑆) ↔ 𝐴 = ((𝑋𝑜) ∩ 𝑆)))
4847rspcev 3340 . . . . . . . 8 (((𝑋𝑜) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((𝑋𝑜) ∩ 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4922, 45, 48syl2anc 694 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
5049ex 449 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) → ((𝑆𝐴) = (𝑜𝑆) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
5150rexlimdva 3060 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) → (∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
5251expimpd 628 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
5318, 52sylbid 230 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
54 difindi 3914 . . . . . . . . . 10 (𝑆 ∖ (𝑥𝑆)) = ((𝑆𝑥) ∪ (𝑆𝑆))
5531uneq2i 3797 . . . . . . . . . 10 ((𝑆𝑥) ∪ (𝑆𝑆)) = ((𝑆𝑥) ∪ ∅)
56 un0 4000 . . . . . . . . . 10 ((𝑆𝑥) ∪ ∅) = (𝑆𝑥)
5754, 55, 563eqtri 2677 . . . . . . . . 9 (𝑆 ∖ (𝑥𝑆)) = (𝑆𝑥)
58 difin2 3923 . . . . . . . . . 10 (𝑆𝑋 → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5958adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
6057, 59syl5eq 2697 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
6160adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
62 simpll 805 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
635adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑆 ∈ V)
642cldopn 20883 . . . . . . . . 9 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
6564adantl 481 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
66 elrestr 16136 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 ∈ V ∧ (𝑋𝑥) ∈ 𝐽) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6762, 63, 65, 66syl3anc 1366 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6861, 67eqeltrd 2730 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))
69 inss2 3867 . . . . . 6 (𝑥𝑆) ⊆ 𝑆
7068, 69jctil 559 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
71 sseq1 3659 . . . . . 6 (𝐴 = (𝑥𝑆) → (𝐴𝑆 ↔ (𝑥𝑆) ⊆ 𝑆))
72 difeq2 3755 . . . . . . 7 (𝐴 = (𝑥𝑆) → (𝑆𝐴) = (𝑆 ∖ (𝑥𝑆)))
7372eleq1d 2715 . . . . . 6 (𝐴 = (𝑥𝑆) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
7471, 73anbi12d 747 . . . . 5 (𝐴 = (𝑥𝑆) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))))
7570, 74syl5ibrcom 237 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7675rexlimdva 3060 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7753, 76impbid 202 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
7810, 15, 773bitr2d 296 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948   cuni 4468  cfv 5926  (class class class)co 6690  t crest 16128  Topctop 20746  Clsdccld 20868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871
This theorem is referenced by:  restcldi  21025  restcldr  21026  restcls  21033  connsubclo  21275  cldllycmp  21346
  Copyright terms: Public domain W3C validator