MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restbas Structured version   Visualization version   GIF version

Theorem restbas 21156
Description: A subspace topology basis is a basis. 𝑌 is normally a subset of the base set of 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbas (𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)

Proof of Theorem restbas
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrest 16282 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑎 ∈ (𝐵t 𝐴) ↔ ∃𝑢𝐵 𝑎 = (𝑢𝐴)))
2 elrest 16282 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑏 ∈ (𝐵t 𝐴) ↔ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
31, 2anbi12d 749 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴))))
4 reeanv 3237 . . . . . 6 (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
53, 4syl6bbr 278 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ ∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴))))
6 simplll 815 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝐵 ∈ TopBases)
7 simplrl 819 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑢𝐵)
8 simplrr 820 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑣𝐵)
9 inss1 3968 . . . . . . . . . . 11 ((𝑢𝑣) ∩ 𝐴) ⊆ (𝑢𝑣)
10 simpr 479 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
119, 10sseldi 3734 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ (𝑢𝑣))
12 basis2 20949 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢𝐵) ∧ (𝑣𝐵𝑐 ∈ (𝑢𝑣))) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
136, 7, 8, 11, 12syl22anc 1474 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
14 simplll 815 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝐵 ∈ TopBases ∧ 𝐴 ∈ V))
1514simpld 477 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐵 ∈ TopBases)
1614simprd 482 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐴 ∈ V)
17 simprl 811 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧𝐵)
18 elrestr 16283 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V ∧ 𝑧𝐵) → (𝑧𝐴) ∈ (𝐵t 𝐴))
1915, 16, 17, 18syl3anc 1473 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ∈ (𝐵t 𝐴))
20 simprrl 823 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝑧)
21 inss2 3969 . . . . . . . . . . . 12 ((𝑢𝑣) ∩ 𝐴) ⊆ 𝐴
22 simplr 809 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
2321, 22sseldi 3734 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝐴)
2420, 23elind 3933 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ (𝑧𝐴))
25 simprrr 824 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧 ⊆ (𝑢𝑣))
26 ssrin 3973 . . . . . . . . . . 11 (𝑧 ⊆ (𝑢𝑣) → (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))
2725, 26syl 17 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))
28 eleq2 2820 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑐𝑤𝑐 ∈ (𝑧𝐴)))
29 sseq1 3759 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴) ↔ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴)))
3028, 29anbi12d 749 . . . . . . . . . . 11 (𝑤 = (𝑧𝐴) → ((𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)) ↔ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))))
3130rspcev 3441 . . . . . . . . . 10 (((𝑧𝐴) ∈ (𝐵t 𝐴) ∧ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3219, 24, 27, 31syl12anc 1471 . . . . . . . . 9 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3313, 32rexlimddv 3165 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3433ralrimiva 3096 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
35 ineq12 3944 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝐴) ∩ (𝑣𝐴)))
36 inindir 3966 . . . . . . . . 9 ((𝑢𝑣) ∩ 𝐴) = ((𝑢𝐴) ∩ (𝑣𝐴))
3735, 36syl6eqr 2804 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝑣) ∩ 𝐴))
3837sseq2d 3766 . . . . . . . . . 10 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑤 ⊆ (𝑎𝑏) ↔ 𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3938anbi2d 742 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ((𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ (𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4039rexbidv 3182 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4137, 40raleqbidv 3283 . . . . . . 7 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4234, 41syl5ibrcom 237 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4342rexlimdvva 3168 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
445, 43sylbid 230 . . . 4 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4544ralrimivv 3100 . . 3 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
46 ovex 6833 . . . 4 (𝐵t 𝐴) ∈ V
47 isbasis2g 20946 . . . 4 ((𝐵t 𝐴) ∈ V → ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4846, 47ax-mp 5 . . 3 ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
4945, 48sylibr 224 . 2 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ TopBases)
50 relxp 5275 . . . . . 6 Rel (V × V)
51 restfn 16279 . . . . . . . 8 t Fn (V × V)
52 fndm 6143 . . . . . . . 8 ( ↾t Fn (V × V) → dom ↾t = (V × V))
5351, 52ax-mp 5 . . . . . . 7 dom ↾t = (V × V)
5453releqi 5351 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
5550, 54mpbir 221 . . . . 5 Rel dom ↾t
5655ovprc2 6840 . . . 4 𝐴 ∈ V → (𝐵t 𝐴) = ∅)
5756adantl 473 . . 3 ((𝐵 ∈ TopBases ∧ ¬ 𝐴 ∈ V) → (𝐵t 𝐴) = ∅)
58 fi0 8483 . . . 4 (fi‘∅) = ∅
59 fibas 20975 . . . 4 (fi‘∅) ∈ TopBases
6058, 59eqeltrri 2828 . . 3 ∅ ∈ TopBases
6157, 60syl6eqel 2839 . 2 ((𝐵 ∈ TopBases ∧ ¬ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ TopBases)
6249, 61pm2.61dan 867 1 (𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wral 3042  wrex 3043  Vcvv 3332  cin 3706  wss 3707  c0 4050   × cxp 5256  dom cdm 5258  Rel wrel 5263   Fn wfn 6036  cfv 6041  (class class class)co 6805  ficfi 8473  t crest 16275  TopBasesctb 20943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-oadd 7725  df-er 7903  df-en 8114  df-fin 8117  df-fi 8474  df-rest 16277  df-bases 20944
This theorem is referenced by:  resttop  21158  2ndcrest  21451
  Copyright terms: Public domain W3C validator