Step | Hyp | Ref
| Expression |
1 | | elrest 16282 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑎 ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑢 ∈ 𝐵 𝑎 = (𝑢 ∩ 𝐴))) |
2 | | elrest 16282 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑏 ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐵 𝑏 = (𝑣 ∩ 𝐴))) |
3 | 1, 2 | anbi12d 749 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵 ↾t 𝐴) ∧ 𝑏 ∈ (𝐵 ↾t 𝐴)) ↔ (∃𝑢 ∈ 𝐵 𝑎 = (𝑢 ∩ 𝐴) ∧ ∃𝑣 ∈ 𝐵 𝑏 = (𝑣 ∩ 𝐴)))) |
4 | | reeanv 3237 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐵 ∃𝑣 ∈ 𝐵 (𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) ↔ (∃𝑢 ∈ 𝐵 𝑎 = (𝑢 ∩ 𝐴) ∧ ∃𝑣 ∈ 𝐵 𝑏 = (𝑣 ∩ 𝐴))) |
5 | 3, 4 | syl6bbr 278 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵 ↾t 𝐴) ∧ 𝑏 ∈ (𝐵 ↾t 𝐴)) ↔ ∃𝑢 ∈ 𝐵 ∃𝑣 ∈ 𝐵 (𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)))) |
6 | | simplll 815 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝐵 ∈ TopBases) |
7 | | simplrl 819 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑢 ∈ 𝐵) |
8 | | simplrr 820 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑣 ∈ 𝐵) |
9 | | inss1 3968 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ 𝑣) ∩ 𝐴) ⊆ (𝑢 ∩ 𝑣) |
10 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
11 | 9, 10 | sseldi 3734 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑐 ∈ (𝑢 ∩ 𝑣)) |
12 | | basis2 20949 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑢 ∈ 𝐵) ∧ (𝑣 ∈ 𝐵 ∧ 𝑐 ∈ (𝑢 ∩ 𝑣))) → ∃𝑧 ∈ 𝐵 (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣))) |
13 | 6, 7, 8, 11, 12 | syl22anc 1474 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → ∃𝑧 ∈ 𝐵 (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣))) |
14 | | simplll 815 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → (𝐵 ∈ TopBases ∧ 𝐴 ∈ V)) |
15 | 14 | simpld 477 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝐵 ∈ TopBases) |
16 | 14 | simprd 482 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝐴 ∈ V) |
17 | | simprl 811 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑧 ∈ 𝐵) |
18 | | elrestr 16283 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V ∧ 𝑧 ∈ 𝐵) → (𝑧 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴)) |
19 | 15, 16, 17, 18 | syl3anc 1473 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → (𝑧 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴)) |
20 | | simprrl 823 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ 𝑧) |
21 | | inss2 3969 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∩ 𝑣) ∩ 𝐴) ⊆ 𝐴 |
22 | | simplr 809 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
23 | 21, 22 | sseldi 3734 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ 𝐴) |
24 | 20, 23 | elind 3933 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ (𝑧 ∩ 𝐴)) |
25 | | simprrr 824 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑧 ⊆ (𝑢 ∩ 𝑣)) |
26 | | ssrin 3973 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ (𝑢 ∩ 𝑣) → (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
28 | | eleq2 2820 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑧 ∩ 𝐴) → (𝑐 ∈ 𝑤 ↔ 𝑐 ∈ (𝑧 ∩ 𝐴))) |
29 | | sseq1 3759 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑧 ∩ 𝐴) → (𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴) ↔ (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
30 | 28, 29 | anbi12d 749 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑧 ∩ 𝐴) → ((𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ↔ (𝑐 ∈ (𝑧 ∩ 𝐴) ∧ (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
31 | 30 | rspcev 3441 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴) ∧ (𝑐 ∈ (𝑧 ∩ 𝐴) ∧ (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) → ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
32 | 19, 24, 27, 31 | syl12anc 1471 |
. . . . . . . . 9
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
33 | 13, 32 | rexlimddv 3165 |
. . . . . . . 8
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
34 | 33 | ralrimiva 3096 |
. . . . . . 7
⊢ (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ∀𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
35 | | ineq12 3944 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (𝑎 ∩ 𝑏) = ((𝑢 ∩ 𝐴) ∩ (𝑣 ∩ 𝐴))) |
36 | | inindir 3966 |
. . . . . . . . 9
⊢ ((𝑢 ∩ 𝑣) ∩ 𝐴) = ((𝑢 ∩ 𝐴) ∩ (𝑣 ∩ 𝐴)) |
37 | 35, 36 | syl6eqr 2804 |
. . . . . . . 8
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (𝑎 ∩ 𝑏) = ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
38 | 37 | sseq2d 3766 |
. . . . . . . . . 10
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (𝑤 ⊆ (𝑎 ∩ 𝑏) ↔ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
39 | 38 | anbi2d 742 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → ((𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)) ↔ (𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
40 | 39 | rexbidv 3182 |
. . . . . . . 8
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)) ↔ ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
41 | 37, 40 | raleqbidv 3283 |
. . . . . . 7
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)) ↔ ∀𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
42 | 34, 41 | syl5ibrcom 237 |
. . . . . 6
⊢ (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → ∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
43 | 42 | rexlimdvva 3168 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (∃𝑢 ∈ 𝐵 ∃𝑣 ∈ 𝐵 (𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → ∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
44 | 5, 43 | sylbid 230 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵 ↾t 𝐴) ∧ 𝑏 ∈ (𝐵 ↾t 𝐴)) → ∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
45 | 44 | ralrimivv 3100 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ∀𝑎 ∈ (𝐵 ↾t 𝐴)∀𝑏 ∈ (𝐵 ↾t 𝐴)∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏))) |
46 | | ovex 6833 |
. . . 4
⊢ (𝐵 ↾t 𝐴) ∈ V |
47 | | isbasis2g 20946 |
. . . 4
⊢ ((𝐵 ↾t 𝐴) ∈ V → ((𝐵 ↾t 𝐴) ∈ TopBases ↔
∀𝑎 ∈ (𝐵 ↾t 𝐴)∀𝑏 ∈ (𝐵 ↾t 𝐴)∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
48 | 46, 47 | ax-mp 5 |
. . 3
⊢ ((𝐵 ↾t 𝐴) ∈ TopBases ↔
∀𝑎 ∈ (𝐵 ↾t 𝐴)∀𝑏 ∈ (𝐵 ↾t 𝐴)∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏))) |
49 | 45, 48 | sylibr 224 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝐵 ↾t 𝐴) ∈
TopBases) |
50 | | relxp 5275 |
. . . . . 6
⊢ Rel (V
× V) |
51 | | restfn 16279 |
. . . . . . . 8
⊢
↾t Fn (V × V) |
52 | | fndm 6143 |
. . . . . . . 8
⊢ (
↾t Fn (V × V) → dom ↾t = (V
× V)) |
53 | 51, 52 | ax-mp 5 |
. . . . . . 7
⊢ dom
↾t = (V × V) |
54 | 53 | releqi 5351 |
. . . . . 6
⊢ (Rel dom
↾t ↔ Rel (V × V)) |
55 | 50, 54 | mpbir 221 |
. . . . 5
⊢ Rel dom
↾t |
56 | 55 | ovprc2 6840 |
. . . 4
⊢ (¬
𝐴 ∈ V → (𝐵 ↾t 𝐴) = ∅) |
57 | 56 | adantl 473 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ ¬
𝐴 ∈ V) → (𝐵 ↾t 𝐴) = ∅) |
58 | | fi0 8483 |
. . . 4
⊢
(fi‘∅) = ∅ |
59 | | fibas 20975 |
. . . 4
⊢
(fi‘∅) ∈ TopBases |
60 | 58, 59 | eqeltrri 2828 |
. . 3
⊢ ∅
∈ TopBases |
61 | 57, 60 | syl6eqel 2839 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ ¬
𝐴 ∈ V) → (𝐵 ↾t 𝐴) ∈
TopBases) |
62 | 49, 61 | pm2.61dan 867 |
1
⊢ (𝐵 ∈ TopBases → (𝐵 ↾t 𝐴) ∈
TopBases) |