MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressxms Structured version   Visualization version   GIF version

Theorem ressxms 22550
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressxms ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)

Proof of Theorem ressxms
StepHypRef Expression
1 eqid 2771 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2771 . . . . . 6 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
31, 2xmsxmet 22481 . . . . 5 (𝐾 ∈ ∞MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
43adantr 466 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))
5 xmetres 22389 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘((Base‘𝐾) ∩ 𝐴)))
64, 5syl 17 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘((Base‘𝐾) ∩ 𝐴)))
7 resres 5549 . . . . 5 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)))
8 inxp 5392 . . . . . 6 (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))
98reseq2i 5530 . . . . 5 ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
107, 9eqtri 2793 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
11 eqid 2771 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
12 eqid 2771 . . . . . . 7 (dist‘𝐾) = (dist‘𝐾)
1311, 12ressds 16281 . . . . . 6 (𝐴𝑉 → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
1413adantl 467 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
15 incom 3956 . . . . . . 7 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
1611, 1ressbas 16137 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
1716adantl 467 . . . . . . 7 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
1815, 17syl5eq 2817 . . . . . 6 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾s 𝐴)))
1918sqxpeqd 5281 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2014, 19reseq12d 5534 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2110, 20syl5eq 2817 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2218fveq2d 6337 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (∞Met‘((Base‘𝐾) ∩ 𝐴)) = (∞Met‘(Base‘(𝐾s 𝐴))))
236, 21, 223eltr3d 2864 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (∞Met‘(Base‘(𝐾s 𝐴))))
24 eqid 2771 . . . . . . 7 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2524, 1, 2xmstopn 22476 . . . . . 6 (𝐾 ∈ ∞MetSp → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
2625adantr 466 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
2726oveq1d 6811 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)))
28 inss1 3981 . . . . 5 ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)
29 xpss12 5265 . . . . . . . . 9 ((((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾) ∧ ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
3028, 28, 29mp2an 672 . . . . . . . 8 (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾))
31 resabs1 5567 . . . . . . . 8 ((((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) ⊆ ((Base‘𝐾) × (Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))))
3230, 31ax-mp 5 . . . . . . 7 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
3310, 32eqtr4i 2796 . . . . . 6 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
34 eqid 2771 . . . . . 6 (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
35 eqid 2771 . . . . . 6 (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)))
3633, 34, 35metrest 22549 . . . . 5 ((((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ ((Base‘𝐾) ∩ 𝐴) ⊆ (Base‘𝐾)) → ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
374, 28, 36sylancl 574 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
3827, 37eqtrd 2805 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))))
39 xmstps 22478 . . . . . . . . 9 (𝐾 ∈ ∞MetSp → 𝐾 ∈ TopSp)
401, 24tpsuni 20961 . . . . . . . . 9 (𝐾 ∈ TopSp → (Base‘𝐾) = (TopOpen‘𝐾))
4139, 40syl 17 . . . . . . . 8 (𝐾 ∈ ∞MetSp → (Base‘𝐾) = (TopOpen‘𝐾))
4241adantr 466 . . . . . . 7 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (Base‘𝐾) = (TopOpen‘𝐾))
4342ineq2d 3965 . . . . . 6 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (𝐴 (TopOpen‘𝐾)))
4415, 43syl5eq 2817 . . . . 5 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (𝐴 (TopOpen‘𝐾)))
4544oveq2d 6812 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
461, 24istps 20959 . . . . . 6 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
4739, 46sylib 208 . . . . 5 (𝐾 ∈ ∞MetSp → (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
48 eqid 2771 . . . . . 6 (TopOpen‘𝐾) = (TopOpen‘𝐾)
4948restin 21191 . . . . 5 (((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
5047, 49sylan 569 . . . 4 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = ((TopOpen‘𝐾) ↾t (𝐴 (TopOpen‘𝐾))))
5145, 50eqtr4d 2808 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t ((Base‘𝐾) ∩ 𝐴)) = ((TopOpen‘𝐾) ↾t 𝐴))
5221fveq2d 6337 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (MetOpen‘(((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴))) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
5338, 51, 523eqtr3d 2813 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))))
5411, 24resstopn 21211 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
55 eqid 2771 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
56 eqid 2771 . . 3 ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
5754, 55, 56isxms2 22473 . 2 ((𝐾s 𝐴) ∈ ∞MetSp ↔ (((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (∞Met‘(Base‘(𝐾s 𝐴))) ∧ ((TopOpen‘𝐾) ↾t 𝐴) = (MetOpen‘((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))))
5823, 53, 57sylanbrc 572 1 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cin 3722  wss 3723   cuni 4575   × cxp 5248  cres 5252  cfv 6030  (class class class)co 6796  Basecbs 16064  s cress 16065  distcds 16158  t crest 16289  TopOpenctopn 16290  ∞Metcxmt 19946  MetOpencmopn 19951  TopOnctopon 20935  TopSpctps 20957  ∞MetSpcxme 22342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-tset 16168  df-ds 16172  df-rest 16291  df-topn 16292  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-xms 22345
This theorem is referenced by:  ressms  22551  qqhcn  30375  qqhucn  30376
  Copyright terms: Public domain W3C validator