![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressuss | Structured version Visualization version GIF version |
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
Ref | Expression |
---|---|
ressuss | ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2770 | . . . . 5 ⊢ (UnifSet‘𝑊) = (UnifSet‘𝑊) | |
3 | 1, 2 | ussval 22282 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊) |
4 | 3 | oveq1i 6802 | . . 3 ⊢ (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) |
5 | fvex 6342 | . . . . 5 ⊢ (UnifSet‘𝑊) ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (UnifSet‘𝑊) ∈ V) |
7 | fvex 6342 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
8 | 7, 7 | xpex 7108 | . . . . 5 ⊢ ((Base‘𝑊) × (Base‘𝑊)) ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((Base‘𝑊) × (Base‘𝑊)) ∈ V) |
10 | sqxpexg 7109 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
11 | restco 21188 | . . . 4 ⊢ (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) | |
12 | 6, 9, 10, 11 | syl3anc 1475 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
13 | 4, 12 | syl5eqr 2818 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
14 | inxp 5393 | . . . . 5 ⊢ (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) | |
15 | incom 3954 | . . . . . . 7 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
16 | eqid 2770 | . . . . . . . 8 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
17 | 16, 1 | ressbas 16136 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝐴))) |
18 | 15, 17 | syl5eqr 2818 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊 ↾s 𝐴))) |
19 | 18 | sqxpeqd 5281 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
20 | 14, 19 | syl5eq 2816 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
21 | 20 | oveq2d 6808 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
22 | 16, 2 | ressunif 22285 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊 ↾s 𝐴))) |
23 | 22 | oveq1d 6807 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
24 | eqid 2770 | . . . . 5 ⊢ (Base‘(𝑊 ↾s 𝐴)) = (Base‘(𝑊 ↾s 𝐴)) | |
25 | eqid 2770 | . . . . 5 ⊢ (UnifSet‘(𝑊 ↾s 𝐴)) = (UnifSet‘(𝑊 ↾s 𝐴)) | |
26 | 24, 25 | ussval 22282 | . . . 4 ⊢ ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴)) |
27 | 26 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
28 | 21, 23, 27 | 3eqtrd 2808 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
29 | 13, 28 | eqtr2d 2805 | 1 ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∩ cin 3720 × cxp 5247 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 ↾s cress 16064 UnifSetcunif 16158 ↾t crest 16288 UnifStcuss 22276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-unif 16172 df-rest 16290 df-uss 22279 |
This theorem is referenced by: ressust 22287 ressusp 22288 ucnextcn 22327 reust 23387 qqhucn 30370 |
Copyright terms: Public domain | W3C validator |