Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resstos Structured version   Visualization version   GIF version

Theorem resstos 29994
Description: The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resstos ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)

Proof of Theorem resstos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tospos 29992 . . 3 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
2 resspos 29993 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
31, 2sylan 561 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
4 eqid 2770 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
5 eqid 2770 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
64, 5ressbas 16136 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
7 inss2 3980 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
86, 7syl6eqssr 3803 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
98adantl 467 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
10 eqid 2770 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
115, 10istos 17242 . . . . . 6 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1211simprbi 478 . . . . 5 (𝐹 ∈ Toset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
1312adantr 466 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
14 ssralv 3813 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
15 ssralv 3813 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1615ralimdv 3111 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1714, 16syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
189, 13, 17sylc 65 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
194, 10ressle 16266 . . . . . . 7 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2019breqd 4795 . . . . . 6 (𝐴𝑉 → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
2119breqd 4795 . . . . . 6 (𝐴𝑉 → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2220, 21orbi12d 883 . . . . 5 (𝐴𝑉 → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
23222ralbidv 3137 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2423adantl 467 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2518, 24mpbid 222 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥))
26 eqid 2770 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
27 eqid 2770 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
2826, 27istos 17242 . 2 ((𝐹s 𝐴) ∈ Toset ↔ ((𝐹s 𝐴) ∈ Poset ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
293, 25, 28sylanbrc 564 1 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 826  wcel 2144  wral 3060  cin 3720  wss 3721   class class class wbr 4784  cfv 6031  (class class class)co 6792  Basecbs 16063  s cress 16064  lecple 16155  Posetcpo 17147  Tosetctos 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-dec 11695  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-ple 16168  df-poset 17153  df-toset 17241
This theorem is referenced by:  submomnd  30044  submarchi  30074
  Copyright terms: Public domain W3C validator