MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrvsca Structured version   Visualization version   GIF version

Theorem resspsrvsca 19641
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem resspsrvsca
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 eqid 2761 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
3 eqid 2761 . . 3 (Base‘𝐻) = (Base‘𝐻)
4 resspsr.b . . 3 𝐵 = (Base‘𝑈)
5 eqid 2761 . . 3 (.r𝐻) = (.r𝐻)
6 eqid 2761 . . 3 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 simprl 811 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋𝑇)
8 resspsr.2 . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
98adantr 472 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ∈ (SubRing‘𝑅))
10 resspsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
1110subrgbas 19012 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
129, 11syl 17 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 = (Base‘𝐻))
137, 12eleqtrd 2842 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝐻))
14 simprr 813 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌𝐵)
151, 2, 3, 4, 5, 6, 13, 14psrvsca 19614 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
16 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
17 eqid 2761 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
18 eqid 2761 . . . 4 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2761 . . . 4 (Base‘𝑆) = (Base‘𝑆)
20 eqid 2761 . . . 4 (.r𝑅) = (.r𝑅)
2118subrgss 19004 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
229, 21syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ⊆ (Base‘𝑅))
2322, 7sseldd 3746 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝑅))
24 resspsr.p . . . . . . . 8 𝑃 = (𝑆s 𝐵)
2516, 10, 1, 4, 24, 8resspsrbas 19638 . . . . . . 7 (𝜑𝐵 = (Base‘𝑃))
2624, 19ressbasss 16155 . . . . . . 7 (Base‘𝑃) ⊆ (Base‘𝑆)
2725, 26syl6eqss 3797 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝑆))
2827adantr 472 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
2928, 14sseldd 3746 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
3016, 17, 18, 19, 20, 6, 23, 29psrvsca 19614 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝑌))
3110, 20ressmulr 16229 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
32 ofeq 7066 . . . . 5 ((.r𝑅) = (.r𝐻) → ∘𝑓 (.r𝑅) = ∘𝑓 (.r𝐻))
339, 31, 323syl 18 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ∘𝑓 (.r𝑅) = ∘𝑓 (.r𝐻))
3433oveqd 6832 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
3530, 34eqtrd 2795 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
36 fvex 6364 . . . . 5 (Base‘𝑈) ∈ V
374, 36eqeltri 2836 . . . 4 𝐵 ∈ V
3824, 17ressvsca 16255 . . . 4 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3937, 38mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ( ·𝑠𝑆) = ( ·𝑠𝑃))
4039oveqd 6832 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
4115, 35, 403eqtr2d 2801 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  {crab 3055  Vcvv 3341  wss 3716  {csn 4322   × cxp 5265  ccnv 5266  cima 5270  cfv 6050  (class class class)co 6815  𝑓 cof 7062  𝑚 cmap 8026  Fincfn 8124  cn 11233  0cn0 11505  Basecbs 16080  s cress 16081  .rcmulr 16165   ·𝑠 cvsca 16168  SubRingcsubrg 18999   mPwSer cmps 19574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-tset 16183  df-subg 17813  df-ring 18770  df-subrg 19001  df-psr 19579
This theorem is referenced by:  ressmplvsca  19682
  Copyright terms: Public domain W3C validator