MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrbas Structured version   Visualization version   GIF version

Theorem resspsrbas 19588
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrbas (𝜑𝐵 = (Base‘𝑃))

Proof of Theorem resspsrbas
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fvex 6350 . . . . 5 (Base‘𝑅) ∈ V
2 resspsr.2 . . . . . . . 8 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 resspsr.h . . . . . . . . 9 𝐻 = (𝑅s 𝑇)
43subrgbas 18962 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
52, 4syl 17 . . . . . . 7 (𝜑𝑇 = (Base‘𝐻))
6 eqid 2748 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
76subrgss 18954 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
82, 7syl 17 . . . . . . 7 (𝜑𝑇 ⊆ (Base‘𝑅))
95, 8eqsstr3d 3769 . . . . . 6 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
109adantr 472 . . . . 5 ((𝜑𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅))
11 mapss 8054 . . . . 5 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
121, 10, 11sylancr 698 . . . 4 ((𝜑𝐼 ∈ V) → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 resspsr.u . . . . 5 𝑈 = (𝐼 mPwSer 𝐻)
14 eqid 2748 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
15 eqid 2748 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 resspsr.b . . . . 5 𝐵 = (Base‘𝑈)
17 simpr 479 . . . . 5 ((𝜑𝐼 ∈ V) → 𝐼 ∈ V)
1813, 14, 15, 16, 17psrbas 19551 . . . 4 ((𝜑𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
19 resspsr.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
20 eqid 2748 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2119, 6, 15, 20, 17psrbas 19551 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 18, 213sstr4d 3777 . . 3 ((𝜑𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
23 reldmpsr 19534 . . . . . . . . 9 Rel dom mPwSer
2423ovprc1 6835 . . . . . . . 8 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅)
2513, 24syl5eq 2794 . . . . . . 7 𝐼 ∈ V → 𝑈 = ∅)
2625adantl 473 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅)
2726fveq2d 6344 . . . . 5 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅))
28 base0 16085 . . . . 5 ∅ = (Base‘∅)
2927, 16, 283eqtr4g 2807 . . . 4 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅)
30 0ss 4103 . . . 4 ∅ ⊆ (Base‘𝑆)
3129, 30syl6eqss 3784 . . 3 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
3222, 31pm2.61dan 867 . 2 (𝜑𝐵 ⊆ (Base‘𝑆))
33 resspsr.p . . 3 𝑃 = (𝑆s 𝐵)
3433, 20ressbas2 16104 . 2 (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃))
3532, 34syl 17 1 (𝜑𝐵 = (Base‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1620  wcel 2127  {crab 3042  Vcvv 3328  wss 3703  c0 4046  ccnv 5253  cima 5257  cfv 6037  (class class class)co 6801  𝑚 cmap 8011  Fincfn 8109  cn 11183  0cn0 11455  Basecbs 16030  s cress 16031  SubRingcsubrg 18949   mPwSer cmps 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-sca 16130  df-vsca 16131  df-tset 16133  df-subg 17763  df-ring 18720  df-subrg 18951  df-psr 19529
This theorem is referenced by:  resspsrvsca  19591  subrgpsr  19592
  Copyright terms: Public domain W3C validator