![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressplusf | Structured version Visualization version GIF version |
Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
Ref | Expression |
---|---|
ressplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
ressplusf.2 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusf.3 | ⊢ ⨣ = (+g‘𝐺) |
ressplusf.4 | ⊢ ⨣ Fn (𝐵 × 𝐵) |
ressplusf.5 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ressplusf | ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusf.5 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | resmpt2 6800 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦))) | |
3 | 1, 1, 2 | mp2an 708 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
4 | ressplusf.4 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) | |
5 | fnov 6810 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) ↔ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦))) | |
6 | 4, 5 | mpbi 220 | . . 3 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) |
7 | 6 | reseq1i 5424 | . 2 ⊢ ( ⨣ ↾ (𝐴 × 𝐴)) = ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) |
8 | ressplusf.2 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
9 | ressplusf.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | 8, 9 | ressbas2 15978 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
11 | 1, 10 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐻) |
12 | ressplusf.3 | . . . 4 ⊢ ⨣ = (+g‘𝐺) | |
13 | fvex 6239 | . . . . . . 7 ⊢ (Base‘𝐺) ∈ V | |
14 | 9, 13 | eqeltri 2726 | . . . . . 6 ⊢ 𝐵 ∈ V |
15 | 14, 1 | ssexi 4836 | . . . . 5 ⊢ 𝐴 ∈ V |
16 | eqid 2651 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 8, 16 | ressplusg 16040 | . . . . 5 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
18 | 15, 17 | ax-mp 5 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐻) |
19 | 12, 18 | eqtri 2673 | . . 3 ⊢ ⨣ = (+g‘𝐻) |
20 | eqid 2651 | . . 3 ⊢ (+𝑓‘𝐻) = (+𝑓‘𝐻) | |
21 | 11, 19, 20 | plusffval 17294 | . 2 ⊢ (+𝑓‘𝐻) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
22 | 3, 7, 21 | 3eqtr4ri 2684 | 1 ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 × cxp 5141 ↾ cres 5145 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 Basecbs 15904 ↾s cress 15905 +gcplusg 15988 +𝑓cplusf 17286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-plusf 17288 |
This theorem is referenced by: xrge0pluscn 30114 xrge0tmdOLD 30119 |
Copyright terms: Public domain | W3C validator |