![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressnm | Structured version Visualization version GIF version |
Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
ressnm.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressnm.2 | ⊢ 𝐵 = (Base‘𝐺) |
ressnm.3 | ⊢ 0 = (0g‘𝐺) |
ressnm.4 | ⊢ 𝑁 = (norm‘𝐺) |
Ref | Expression |
---|---|
ressnm | ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressnm.1 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressnm.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | ressbas2 16137 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
4 | 3 | 3ad2ant3 1128 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝐻)) |
5 | fvex 6342 | . . . . . . . 8 ⊢ (Base‘𝐺) ∈ V | |
6 | 2, 5 | eqeltri 2845 | . . . . . . 7 ⊢ 𝐵 ∈ V |
7 | 6 | ssex 4933 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
8 | eqid 2770 | . . . . . . 7 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
9 | 1, 8 | ressds 16280 | . . . . . 6 ⊢ (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻)) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (dist‘𝐺) = (dist‘𝐻)) |
11 | 10 | 3ad2ant3 1128 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (dist‘𝐺) = (dist‘𝐻)) |
12 | eqidd 2771 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 = 𝑥) | |
13 | ressnm.3 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
14 | 1, 2, 13 | ress0g 17526 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝐻)) |
15 | 11, 12, 14 | oveq123d 6813 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g‘𝐻))) |
16 | 4, 15 | mpteq12dv 4865 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
17 | ressnm.4 | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
18 | 17, 2, 13, 8 | nmfval 22612 | . . . . 5 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) |
19 | 18 | reseq1i 5530 | . . . 4 ⊢ (𝑁 ↾ 𝐴) = ((𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) |
20 | resmpt 5590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) | |
21 | 19, 20 | syl5eq 2816 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑁 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) |
22 | 21 | 3ad2ant3 1128 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝑥(dist‘𝐺) 0 ))) |
23 | eqid 2770 | . . . 4 ⊢ (norm‘𝐻) = (norm‘𝐻) | |
24 | eqid 2770 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
25 | eqid 2770 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
26 | eqid 2770 | . . . 4 ⊢ (dist‘𝐻) = (dist‘𝐻) | |
27 | 23, 24, 25, 26 | nmfval 22612 | . . 3 ⊢ (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻))) |
28 | 27 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g‘𝐻)))) |
29 | 16, 22, 28 | 3eqtr4d 2814 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ⊆ wss 3721 ↦ cmpt 4861 ↾ cres 5251 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 ↾s cress 16064 distcds 16157 0gc0g 16307 Mndcmnd 17501 normcnm 22600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-ds 16171 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-nm 22606 |
This theorem is referenced by: zringnm 30338 rezh 30349 |
Copyright terms: Public domain | W3C validator |