![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmplbas2 | Structured version Visualization version GIF version |
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmplbas2.w | ⊢ 𝑊 = (𝐼 mPwSer 𝐻) |
ressmplbas2.c | ⊢ 𝐶 = (Base‘𝑊) |
ressmplbas2.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
ressmplbas2 | ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | ressmpl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | eqid 2760 | . . . . . . . 8 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
4 | ressmpl.h | . . . . . . . 8 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | ressmplbas2.w | . . . . . . . 8 ⊢ 𝑊 = (𝐼 mPwSer 𝐻) | |
6 | ressmplbas2.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝑊) | |
7 | 3, 4, 5, 6 | subrgpsr 19621 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
8 | 1, 2, 7 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
9 | eqid 2760 | . . . . . . 7 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
10 | 9 | subrgss 18983 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
12 | df-ss 3729 | . . . . 5 ⊢ (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) | |
13 | 11, 12 | sylib 208 | . . . 4 ⊢ (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) |
14 | eqid 2760 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | 4, 14 | subrg0 18989 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
16 | 2, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
17 | 16 | breq2d 4816 | . . . . 5 ⊢ (𝜑 → (𝑓 finSupp (0g‘𝑅) ↔ 𝑓 finSupp (0g‘𝐻))) |
18 | 17 | abbidv 2879 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)} = {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
19 | 13, 18 | ineq12d 3958 | . . 3 ⊢ (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)})) |
20 | 19 | eqcomd 2766 | . 2 ⊢ (𝜑 → (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
21 | ressmpl.u | . . . 4 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
22 | eqid 2760 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
23 | ressmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
24 | 21, 5, 6, 22, 23 | mplbas 19631 | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} |
25 | dfrab3 4045 | . . 3 ⊢ {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) | |
26 | 24, 25 | eqtri 2782 | . 2 ⊢ 𝐵 = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
27 | ressmpl.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
28 | ressmplbas2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
29 | 27, 3, 9, 14, 28 | mplbas 19631 | . . . . 5 ⊢ 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} |
30 | dfrab3 4045 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) | |
31 | 29, 30 | eqtri 2782 | . . . 4 ⊢ 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
32 | 31 | ineq2i 3954 | . . 3 ⊢ (𝐶 ∩ 𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
33 | inass 3966 | . . 3 ⊢ ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) | |
34 | 32, 33 | eqtr4i 2785 | . 2 ⊢ (𝐶 ∩ 𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
35 | 20, 26, 34 | 3eqtr4g 2819 | 1 ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {cab 2746 {crab 3054 ∩ cin 3714 ⊆ wss 3715 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 finSupp cfsupp 8440 Basecbs 16059 ↾s cress 16060 0gc0g 16302 SubRingcsubrg 18978 mPwSer cmps 19553 mPoly cmpl 19555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-tset 16162 df-0g 16304 df-gsum 16305 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-mulg 17742 df-subg 17792 df-ghm 17859 df-cntz 17950 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-subrg 18980 df-psr 19558 df-mpl 19560 |
This theorem is referenced by: ressmplbas 19658 subrgmpl 19662 ressply1bas2 19800 |
Copyright terms: Public domain | W3C validator |