Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressiocsup Structured version   Visualization version   GIF version

Theorem ressiocsup 40299
Description: If the supremum belongs to a set of reals, the set is a subset of the unbounded below, right-closed interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressiocsup.a (𝜑𝐴 ⊆ ℝ)
ressiocsup.s 𝑆 = sup(𝐴, ℝ*, < )
ressiocsup.e (𝜑𝑆𝐴)
ressiocsup.5 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
ressiocsup (𝜑𝐴𝐼)

Proof of Theorem ressiocsup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10298 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressiocsup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressiocsup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 10285 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3762 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 466 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 39811 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9syl5eqel 2854 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
117sselda 3752 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
124adantr 466 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
13 simpr 471 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
1412, 13sseldd 3753 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1514mnfltd 12163 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
16 supxrub 12359 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 13, 16syl2anc 573 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2777 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 4812 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝑆)
212, 10, 11, 15, 20eliocd 40251 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,]𝑆))
22 ressiocsup.5 . . . 4 𝐼 = (-∞(,]𝑆)
2321, 22syl6eleqr 2861 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
2423ralrimiva 3115 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
25 dfss3 3741 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
2624, 25sylibr 224 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3723   class class class wbr 4786  (class class class)co 6793  supcsup 8502  cr 10137  -∞cmnf 10274  *cxr 10275   < clt 10276  cle 10277  (,]cioc 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-ioc 12385
This theorem is referenced by:  pimdecfgtioc  41445  pimincfltioc  41446
  Copyright terms: Public domain W3C validator