![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressbas2 | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas2 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3730 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | 1 | biimpi 206 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
3 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
4 | fvex 6364 | . . . . 5 ⊢ (Base‘𝑊) ∈ V | |
5 | 3, 4 | eqeltri 2836 | . . . 4 ⊢ 𝐵 ∈ V |
6 | 5 | ssex 4955 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
7 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
8 | 7, 3 | ressbas 16153 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
10 | 2, 9 | eqtr3d 2797 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∩ cin 3715 ⊆ wss 3716 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 ↾s cress 16081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-i2m1 10217 ax-1ne0 10218 ax-rrecex 10221 ax-cnre 10222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-nn 11234 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 |
This theorem is referenced by: rescbas 16711 fullresc 16733 resssetc 16964 yoniso 17147 issstrmgm 17474 gsumress 17498 issubmnd 17540 ress0g 17541 submnd0 17542 submbas 17577 resmhm 17581 resgrpplusfrn 17658 subgbas 17820 issubg2 17831 resghm 17898 submod 18205 ringidss 18798 unitgrpbas 18887 isdrng2 18980 drngmcl 18983 drngid2 18986 isdrngd 18995 islss3 19182 lsslss 19184 lsslsp 19238 reslmhm 19275 issubassa 19547 resspsrbas 19638 mplbas 19652 ressmplbas 19679 evlssca 19745 mpfconst 19753 mpfind 19759 ply1bas 19788 ressply1bas 19822 evls1sca 19911 xrs1mnd 20007 xrs10 20008 xrs1cmn 20009 xrge0subm 20010 xrge0cmn 20011 cnmsubglem 20032 nn0srg 20039 rge0srg 20040 zringbas 20047 expghm 20067 cnmsgnbas 20147 psgnghm 20149 rebase 20175 dsmmbase 20302 dsmmval2 20303 lsslindf 20392 lsslinds 20393 islinds3 20396 m2cpmrngiso 20786 ressusp 22291 imasdsf1olem 22400 xrge0gsumle 22858 xrge0tsms 22859 cmsss 23368 minveclem3a 23419 efabl 24517 efsubm 24518 qrngbas 25529 ressplusf 29981 ressnm 29982 ressprs 29986 ressmulgnn 30014 ressmulgnn0 30015 xrge0tsmsd 30116 ress1r 30120 xrge0slmod 30175 prsssdm 30294 ordtrestNEW 30298 ordtrest2NEW 30300 xrge0iifmhm 30316 esumpfinvallem 30467 sitgaddlemb 30741 prdsbnd2 33926 cnpwstotbnd 33928 repwsmet 33965 rrnequiv 33966 lcdvbase 37403 islssfg 38161 lnmlsslnm 38172 pwssplit4 38180 cntzsdrg 38293 deg1mhm 38306 gsumge0cl 41110 sge0tsms 41119 cnfldsrngbas 42298 issubmgm2 42319 submgmbas 42325 resmgmhm 42327 amgmlemALT 43081 |
Copyright terms: Public domain | W3C validator |