![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressbas | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | simp1 1130 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) | |
3 | sseqin2 3952 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
4 | 2, 3 | sylib 208 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
5 | ressbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
6 | 5, 1 | ressid2 16122 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
7 | 6 | fveq2d 6348 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
8 | 1, 4, 7 | 3eqtr4a 2812 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 8 | 3expib 1116 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
10 | simp2 1131 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) | |
11 | fvex 6354 | . . . . . . . 8 ⊢ (Base‘𝑊) ∈ V | |
12 | 1, 11 | eqeltri 2827 | . . . . . . 7 ⊢ 𝐵 ∈ V |
13 | 12 | inex2 4944 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ V |
14 | baseid 16113 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
15 | 14 | setsid 16108 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
16 | 10, 13, 15 | sylancl 697 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
17 | 5, 1 | ressval2 16123 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
18 | 17 | fveq2d 6348 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
19 | 16, 18 | eqtr4d 2789 | . . . 4 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
20 | 19 | 3expib 1116 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
21 | 9, 20 | pm2.61i 176 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
22 | 0fv 6380 | . . . . 5 ⊢ (∅‘(Base‘ndx)) = ∅ | |
23 | 0ex 4934 | . . . . . 6 ⊢ ∅ ∈ V | |
24 | 23, 14 | strfvn 16073 | . . . . 5 ⊢ (Base‘∅) = (∅‘(Base‘ndx)) |
25 | in0 4103 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
26 | 22, 24, 25 | 3eqtr4ri 2785 | . . . 4 ⊢ (𝐴 ∩ ∅) = (Base‘∅) |
27 | fvprc 6338 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
28 | 1, 27 | syl5eq 2798 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝐵 = ∅) |
29 | 28 | ineq2d 3949 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
30 | reldmress 16120 | . . . . . . 7 ⊢ Rel dom ↾s | |
31 | 30 | ovprc1 6839 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
32 | 5, 31 | syl5eq 2798 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
33 | 32 | fveq2d 6348 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑅) = (Base‘∅)) |
34 | 26, 29, 33 | 3eqtr4a 2812 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
35 | 34 | adantr 472 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
36 | 21, 35 | pm2.61ian 866 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 〈cop 4319 ‘cfv 6041 (class class class)co 6805 ndxcnx 16048 sSet csts 16049 Basecbs 16051 ↾s cress 16052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-i2m1 10188 ax-1ne0 10189 ax-rrecex 10192 ax-cnre 10193 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-nn 11205 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 |
This theorem is referenced by: ressbas2 16125 ressbasss 16126 ressress 16132 rescabs 16686 resscatc 16948 resscntz 17956 idrespermg 18023 opprsubg 18828 subrgpropd 19008 sralmod 19381 resstopn 21184 resstps 21185 ressuss 22260 ressxms 22523 ressms 22524 cphsubrglem 23169 resspos 29960 resstos 29961 xrge0base 29986 xrge00 29987 submomnd 30011 suborng 30116 gsumge0cl 41083 sge0tsms 41092 lidlssbas 42424 lidlbas 42425 uzlidlring 42431 dmatALTbas 42692 |
Copyright terms: Public domain | W3C validator |