Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrtcn Structured version   Visualization version   GIF version

Theorem resqrtcn 24535
 Description: Continuity of the real square root function. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
resqrtcn (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)

Proof of Theorem resqrtcn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrtf 14147 . . . . . . 7 √:ℂ⟶ℂ
21a1i 11 . . . . . 6 (⊤ → √:ℂ⟶ℂ)
32feqmptd 6288 . . . . 5 (⊤ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
43reseq1d 5427 . . . 4 (⊤ → (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)))
5 elrege0 12316 . . . . . . . 8 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
65simplbi 475 . . . . . . 7 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ)
76recnd 10106 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
87ssriv 3640 . . . . 5 (0[,)+∞) ⊆ ℂ
9 resmpt 5484 . . . . 5 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
108, 9mp1i 13 . . . 4 (⊤ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
114, 10eqtrd 2685 . . 3 (⊤ → (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
1211trud 1533 . 2 (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
13 eqid 2651 . . . 4 (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
14 resqrtcl 14038 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ ℝ)
155, 14sylbi 207 . . . 4 (𝑥 ∈ (0[,)+∞) → (√‘𝑥) ∈ ℝ)
1613, 15fmpti 6423 . . 3 (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ
17 ax-resscn 10031 . . . 4 ℝ ⊆ ℂ
18 cxpsqrt 24494 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
197, 18syl 17 . . . . . . 7 (𝑥 ∈ (0[,)+∞) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
2019mpteq2ia 4773 . . . . . 6 (𝑥 ∈ (0[,)+∞) ↦ (𝑥𝑐(1 / 2))) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
21 eqid 2651 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221cnfldtopon 22633 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2322a1i 11 . . . . . . . . 9 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
24 resttopon 21013 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
2523, 8, 24sylancl 695 . . . . . . . 8 (⊤ → ((TopOpen‘ℂfld) ↾t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
2625cnmptid 21512 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,)+∞) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞))))
27 cnvimass 5520 . . . . . . . . . . 11 (ℜ “ ℝ+) ⊆ dom ℜ
28 ref 13896 . . . . . . . . . . . 12 ℜ:ℂ⟶ℝ
2928fdmi 6090 . . . . . . . . . . 11 dom ℜ = ℂ
3027, 29sseqtri 3670 . . . . . . . . . 10 (ℜ “ ℝ+) ⊆ ℂ
31 resttopon 21013 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℜ “ ℝ+) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+)) ∈ (TopOn‘(ℜ “ ℝ+)))
3223, 30, 31sylancl 695 . . . . . . . . 9 (⊤ → ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+)) ∈ (TopOn‘(ℜ “ ℝ+)))
33 halfcn 11285 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
34 1rp 11874 . . . . . . . . . . . . . 14 1 ∈ ℝ+
35 rphalfcl 11896 . . . . . . . . . . . . . 14 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
3634, 35ax-mp 5 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
37 rpre 11877 . . . . . . . . . . . . 13 ((1 / 2) ∈ ℝ+ → (1 / 2) ∈ ℝ)
38 rere 13906 . . . . . . . . . . . . 13 ((1 / 2) ∈ ℝ → (ℜ‘(1 / 2)) = (1 / 2))
3936, 37, 38mp2b 10 . . . . . . . . . . . 12 (ℜ‘(1 / 2)) = (1 / 2)
4039, 36eqeltri 2726 . . . . . . . . . . 11 (ℜ‘(1 / 2)) ∈ ℝ+
41 ffn 6083 . . . . . . . . . . . 12 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
42 elpreima 6377 . . . . . . . . . . . 12 (ℜ Fn ℂ → ((1 / 2) ∈ (ℜ “ ℝ+) ↔ ((1 / 2) ∈ ℂ ∧ (ℜ‘(1 / 2)) ∈ ℝ+)))
4328, 41, 42mp2b 10 . . . . . . . . . . 11 ((1 / 2) ∈ (ℜ “ ℝ+) ↔ ((1 / 2) ∈ ℂ ∧ (ℜ‘(1 / 2)) ∈ ℝ+))
4433, 40, 43mpbir2an 975 . . . . . . . . . 10 (1 / 2) ∈ (ℜ “ ℝ+)
4544a1i 11 . . . . . . . . 9 (⊤ → (1 / 2) ∈ (ℜ “ ℝ+))
4625, 32, 45cnmptc 21513 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,)+∞) ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+))))
47 eqid 2651 . . . . . . . . . 10 (ℜ “ ℝ+) = (ℜ “ ℝ+)
48 eqid 2651 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
49 eqid 2651 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+)) = ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+))
5047, 21, 48, 49cxpcn3 24534 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞), 𝑧 ∈ (ℜ “ ℝ+) ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) ×t ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+))) Cn (TopOpen‘ℂfld))
5150a1i 11 . . . . . . . 8 (⊤ → (𝑦 ∈ (0[,)+∞), 𝑧 ∈ (ℜ “ ℝ+) ↦ (𝑦𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) ×t ((TopOpen‘ℂfld) ↾t (ℜ “ ℝ+))) Cn (TopOpen‘ℂfld)))
52 oveq12 6699 . . . . . . . 8 ((𝑦 = 𝑥𝑧 = (1 / 2)) → (𝑦𝑐𝑧) = (𝑥𝑐(1 / 2)))
5325, 26, 46, 25, 32, 51, 52cnmpt12 21518 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,)+∞) ↦ (𝑥𝑐(1 / 2))) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn (TopOpen‘ℂfld)))
54 ssid 3657 . . . . . . . 8 ℂ ⊆ ℂ
5522toponunii 20769 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
5655restid 16141 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
5722, 56ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
5857eqcomi 2660 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
5921, 48, 58cncfcn 22759 . . . . . . . 8 (((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn (TopOpen‘ℂfld)))
608, 54, 59mp2an 708 . . . . . . 7 ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn (TopOpen‘ℂfld))
6153, 60syl6eleqr 2741 . . . . . 6 (⊤ → (𝑥 ∈ (0[,)+∞) ↦ (𝑥𝑐(1 / 2))) ∈ ((0[,)+∞)–cn→ℂ))
6220, 61syl5eqelr 2735 . . . . 5 (⊤ → (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ))
6362trud 1533 . . . 4 (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ)
64 cncffvrn 22748 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℂ)) → ((𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℝ) ↔ (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ))
6517, 63, 64mp2an 708 . . 3 ((𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℝ) ↔ (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)):(0[,)+∞)⟶ℝ)
6616, 65mpbir 221 . 2 (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)) ∈ ((0[,)+∞)–cn→ℝ)
6712, 66eqeltri 2726 1 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030   ⊆ wss 3607   class class class wbr 4685   ↦ cmpt 4762  ◡ccnv 5142  dom cdm 5143   ↾ cres 5145   “ cima 5146   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975  +∞cpnf 10109   ≤ cle 10113   / cdiv 10722  2c2 11108  ℝ+crp 11870  [,)cico 12215  ℜcre 13881  √csqrt 14017   ↾t crest 16128  TopOpenctopn 16129  ℂfldccnfld 19794  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411  –cn→ccncf 22726  ↑𝑐ccxp 24347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-tan 14846  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349 This theorem is referenced by:  loglesqrt  24544  rpsqrtcn  30799  areacirclem2  33631
 Copyright terms: Public domain W3C validator