![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmpt2 | Structured version Visualization version GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.) |
Ref | Expression |
---|---|
resmpt2 | ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab2 6799 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)}) | |
2 | df-mpt2 6695 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} | |
3 | 2 | reseq1i 5424 | . 2 ⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) |
4 | df-mpt2 6695 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)} | |
5 | 1, 3, 4 | 3eqtr4g 2710 | 1 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 × cxp 5141 ↾ cres 5145 {coprab 6691 ↦ cmpt2 6692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-res 5155 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: ofmres 7206 cantnfval2 8604 pgrpsubgsymg 17874 sylow3lem5 18092 phssip 20051 mamures 20244 mdetrsca2 20458 mdetrlin2 20461 mdetunilem5 20470 smadiadetglem1 20525 smadiadetglem2 20526 pmatcollpw3lem 20636 txss12 21456 txbasval 21457 cnmpt2res 21528 fmucndlem 22142 cnmpt2pc 22774 oprpiece1res1 22797 oprpiece1res2 22798 cxpcn3 24534 ressplusf 29778 submatres 30000 cvmlift2lem6 31416 cvmlift2lem12 31422 icorempt2 33329 elicores 40078 volicorescl 41088 rngchomrnghmresALTV 42321 rhmsubclem1 42411 rhmsubcALTVlem1 42429 |
Copyright terms: Public domain | W3C validator |