MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm2 Structured version   Visualization version   GIF version

Theorem resmhm2 17568
Description: One direction of resmhm2b 17569. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem resmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 17546 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝑆 ∈ Mnd)
2 submrcl 17554 . . 3 (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd)
31, 2anim12i 600 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
4 eqid 2771 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2771 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 17548 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
7 resmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
87submbas 17563 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
9 eqid 2771 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
109submss 17558 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ⊆ (Base‘𝑇))
118, 10eqsstr3d 3789 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇))
12 fss 6196 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
136, 11, 12syl2an 583 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
14 eqid 2771 . . . . . . . 8 (+g𝑆) = (+g𝑆)
15 eqid 2771 . . . . . . . 8 (+g𝑈) = (+g𝑈)
164, 14, 15mhmlin 17550 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
17163expb 1113 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
1817adantlr 694 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
19 eqid 2771 . . . . . . . 8 (+g𝑇) = (+g𝑇)
207, 19ressplusg 16201 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2120ad2antlr 706 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2221oveqd 6810 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2318, 22eqtr4d 2808 . . . 4 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2423ralrimivva 3120 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
25 eqid 2771 . . . . . 6 (0g𝑆) = (0g𝑆)
26 eqid 2771 . . . . . 6 (0g𝑈) = (0g𝑈)
2725, 26mhm0 17551 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑈) → (𝐹‘(0g𝑆)) = (0g𝑈))
2827adantr 466 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
29 eqid 2771 . . . . . 6 (0g𝑇) = (0g𝑇)
307, 29subm0 17564 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3130adantl 467 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (0g𝑇) = (0g𝑈))
3228, 31eqtr4d 2808 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
3313, 24, 323jca 1122 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
344, 9, 14, 19, 25, 29ismhm 17545 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
353, 33, 34sylanbrc 572 1 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wss 3723  wf 6027  cfv 6031  (class class class)co 6793  Basecbs 16064  s cress 16065  +gcplusg 16149  0gc0g 16308  Mndcmnd 17502   MndHom cmhm 17541  SubMndcsubmnd 17542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544
This theorem is referenced by:  resmhm2b  17569  resghm2  17885  zrhpsgnmhm  20145  lgseisenlem4  25324
  Copyright terms: Public domain W3C validator