Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm2 Structured version   Visualization version   GIF version

Theorem reslmhm2 19265
 Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
reslmhm2.u 𝑈 = (𝑇s 𝑋)
reslmhm2.l 𝐿 = (LSubSp‘𝑇)
Assertion
Ref Expression
reslmhm2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))

Proof of Theorem reslmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2770 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2770 . 2 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3 eqid 2770 . 2 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4 eqid 2770 . 2 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2770 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2770 . 2 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
7 lmhmlmod1 19245 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod)
873ad2ant1 1126 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑆 ∈ LMod)
9 simp2 1130 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑇 ∈ LMod)
10 reslmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
1110, 5resssca 16238 . . . 4 (𝑋𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈))
12113ad2ant3 1128 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈))
13 eqid 2770 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
144, 13lmhmsca 19242 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆))
15143ad2ant1 1126 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆))
1612, 15eqtrd 2804 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆))
17 lmghm 19243 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
18173ad2ant1 1126 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
19 reslmhm2.l . . . . 5 𝐿 = (LSubSp‘𝑇)
2019lsssubg 19169 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
21203adant1 1123 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
2210resghm2 17884 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2318, 21, 22syl2anc 565 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2770 . . . . . 6 ( ·𝑠𝑈) = ( ·𝑠𝑈)
254, 6, 1, 2, 24lmhmlin 19247 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
26253expb 1112 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
27263ad2antl1 1199 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
28 simpl3 1230 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋𝐿)
2910, 3ressvsca 16239 . . . . 5 (𝑋𝐿 → ( ·𝑠𝑇) = ( ·𝑠𝑈))
3029oveqd 6809 . . . 4 (𝑋𝐿 → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3128, 30syl 17 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3227, 31eqtr4d 2807 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
331, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32islmhmd 19251 1 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ‘cfv 6031  (class class class)co 6792  Basecbs 16063   ↾s cress 16064  Scalarcsca 16151   ·𝑠 cvsca 16152  SubGrpcsubg 17795   GrpHom cghm 17864  LModclmod 19072  LSubSpclss 19141   LMHom clmhm 19231 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-sca 16164  df-vsca 16165  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-ghm 17865  df-mgp 18697  df-ur 18709  df-ring 18756  df-lmod 19074  df-lss 19142  df-lmhm 19234 This theorem is referenced by:  reslmhm2b  19266
 Copyright terms: Public domain W3C validator